| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabi.1 |
|- A = { <. x , y >. | ph } |
| 2 |
|
df-opab |
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 3 |
1 2
|
eqtri |
|- A = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 4 |
|
vex |
|- x e. _V |
| 5 |
|
vex |
|- y e. _V |
| 6 |
4 5
|
opelvv |
|- <. x , y >. e. ( _V X. _V ) |
| 7 |
|
eleq1 |
|- ( z = <. x , y >. -> ( z e. ( _V X. _V ) <-> <. x , y >. e. ( _V X. _V ) ) ) |
| 8 |
6 7
|
mpbiri |
|- ( z = <. x , y >. -> z e. ( _V X. _V ) ) |
| 9 |
8
|
adantr |
|- ( ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) ) |
| 10 |
9
|
exlimivv |
|- ( E. x E. y ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) ) |
| 11 |
10
|
abssi |
|- { z | E. x E. y ( z = <. x , y >. /\ ph ) } C_ ( _V X. _V ) |
| 12 |
3 11
|
eqsstri |
|- A C_ ( _V X. _V ) |
| 13 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
| 14 |
12 13
|
mpbir |
|- Rel A |