Step |
Hyp |
Ref |
Expression |
1 |
|
df-rel |
|- ( Rel dom A <-> dom A C_ ( _V X. _V ) ) |
2 |
1
|
anbi2i |
|- ( ( Rel A /\ Rel dom A ) <-> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) |
3 |
|
relssdmrn |
|- ( Rel A -> A C_ ( dom A X. ran A ) ) |
4 |
|
ssv |
|- ran A C_ _V |
5 |
|
xpss12 |
|- ( ( dom A C_ ( _V X. _V ) /\ ran A C_ _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) |
6 |
4 5
|
mpan2 |
|- ( dom A C_ ( _V X. _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) |
7 |
3 6
|
sylan9ss |
|- ( ( Rel A /\ dom A C_ ( _V X. _V ) ) -> A C_ ( ( _V X. _V ) X. _V ) ) |
8 |
|
xpss |
|- ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) |
9 |
|
sstr |
|- ( ( A C_ ( ( _V X. _V ) X. _V ) /\ ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) ) -> A C_ ( _V X. _V ) ) |
10 |
8 9
|
mpan2 |
|- ( A C_ ( ( _V X. _V ) X. _V ) -> A C_ ( _V X. _V ) ) |
11 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
12 |
10 11
|
sylibr |
|- ( A C_ ( ( _V X. _V ) X. _V ) -> Rel A ) |
13 |
|
dmss |
|- ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ dom ( ( _V X. _V ) X. _V ) ) |
14 |
|
vn0 |
|- _V =/= (/) |
15 |
|
dmxp |
|- ( _V =/= (/) -> dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) ) |
16 |
14 15
|
ax-mp |
|- dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) |
17 |
13 16
|
sseqtrdi |
|- ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ ( _V X. _V ) ) |
18 |
12 17
|
jca |
|- ( A C_ ( ( _V X. _V ) X. _V ) -> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) |
19 |
7 18
|
impbii |
|- ( ( Rel A /\ dom A C_ ( _V X. _V ) ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |
20 |
2 19
|
bitri |
|- ( ( Rel A /\ Rel dom A ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |