| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rel |  |-  ( Rel dom A <-> dom A C_ ( _V X. _V ) ) | 
						
							| 2 | 1 | anbi2i |  |-  ( ( Rel A /\ Rel dom A ) <-> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) | 
						
							| 3 |  | relssdmrn |  |-  ( Rel A -> A C_ ( dom A X. ran A ) ) | 
						
							| 4 |  | ssv |  |-  ran A C_ _V | 
						
							| 5 |  | xpss12 |  |-  ( ( dom A C_ ( _V X. _V ) /\ ran A C_ _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( dom A C_ ( _V X. _V ) -> ( dom A X. ran A ) C_ ( ( _V X. _V ) X. _V ) ) | 
						
							| 7 | 3 6 | sylan9ss |  |-  ( ( Rel A /\ dom A C_ ( _V X. _V ) ) -> A C_ ( ( _V X. _V ) X. _V ) ) | 
						
							| 8 |  | xpss |  |-  ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) | 
						
							| 9 |  | sstr |  |-  ( ( A C_ ( ( _V X. _V ) X. _V ) /\ ( ( _V X. _V ) X. _V ) C_ ( _V X. _V ) ) -> A C_ ( _V X. _V ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( A C_ ( ( _V X. _V ) X. _V ) -> A C_ ( _V X. _V ) ) | 
						
							| 11 |  | df-rel |  |-  ( Rel A <-> A C_ ( _V X. _V ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( A C_ ( ( _V X. _V ) X. _V ) -> Rel A ) | 
						
							| 13 |  | dmss |  |-  ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ dom ( ( _V X. _V ) X. _V ) ) | 
						
							| 14 |  | vn0 |  |-  _V =/= (/) | 
						
							| 15 |  | dmxp |  |-  ( _V =/= (/) -> dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  dom ( ( _V X. _V ) X. _V ) = ( _V X. _V ) | 
						
							| 17 | 13 16 | sseqtrdi |  |-  ( A C_ ( ( _V X. _V ) X. _V ) -> dom A C_ ( _V X. _V ) ) | 
						
							| 18 | 12 17 | jca |  |-  ( A C_ ( ( _V X. _V ) X. _V ) -> ( Rel A /\ dom A C_ ( _V X. _V ) ) ) | 
						
							| 19 | 7 18 | impbii |  |-  ( ( Rel A /\ dom A C_ ( _V X. _V ) ) <-> A C_ ( ( _V X. _V ) X. _V ) ) | 
						
							| 20 | 2 19 | bitri |  |-  ( ( Rel A /\ Rel dom A ) <-> A C_ ( ( _V X. _V ) X. _V ) ) |