| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resundir |  |-  ( ( A u. B ) |` dom A ) = ( ( A |` dom A ) u. ( B |` dom A ) ) | 
						
							| 2 |  | resdm |  |-  ( Rel A -> ( A |` dom A ) = A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( A |` dom A ) = A ) | 
						
							| 4 |  | dmres |  |-  dom ( B |` dom A ) = ( dom A i^i dom B ) | 
						
							| 5 |  | simpr |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( dom A i^i dom B ) = (/) ) | 
						
							| 6 | 4 5 | eqtrid |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> dom ( B |` dom A ) = (/) ) | 
						
							| 7 |  | relres |  |-  Rel ( B |` dom A ) | 
						
							| 8 |  | reldm0 |  |-  ( Rel ( B |` dom A ) -> ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) | 
						
							| 10 | 6 9 | sylibr |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( B |` dom A ) = (/) ) | 
						
							| 11 | 3 10 | uneq12d |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = ( A u. (/) ) ) | 
						
							| 12 |  | un0 |  |-  ( A u. (/) ) = A | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = A ) | 
						
							| 14 | 1 13 | eqtrid |  |-  ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A u. B ) |` dom A ) = A ) |