| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relfld |  |-  ( Rel R -> U. U. R = ( dom R u. ran R ) ) | 
						
							| 2 | 1 | reseq2d |  |-  ( Rel R -> ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) ) | 
						
							| 3 |  | resundi |  |-  ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) | 
						
							| 4 |  | eqtr |  |-  ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) | 
						
							| 5 |  | resss |  |-  ( R |` ran R ) C_ R | 
						
							| 6 |  | resdm |  |-  ( Rel R -> ( R |` dom R ) = R ) | 
						
							| 7 |  | ssequn2 |  |-  ( ( R |` ran R ) C_ R <-> ( R u. ( R |` ran R ) ) = R ) | 
						
							| 8 |  | uneq1 |  |-  ( ( R |` dom R ) = R -> ( ( R |` dom R ) u. ( R |` ran R ) ) = ( R u. ( R |` ran R ) ) ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) <-> ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) ) ) | 
						
							| 10 |  | eqtr |  |-  ( ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) /\ ( R u. ( R |` ran R ) ) = R ) -> ( R |` U. U. R ) = R ) | 
						
							| 11 | 10 | ex |  |-  ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) | 
						
							| 12 | 9 11 | biimtrdi |  |-  ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) ) | 
						
							| 13 | 12 | com3r |  |-  ( ( R u. ( R |` ran R ) ) = R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) | 
						
							| 14 | 7 13 | sylbi |  |-  ( ( R |` ran R ) C_ R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) | 
						
							| 15 | 5 6 14 | mpsyl |  |-  ( Rel R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) | 
						
							| 16 | 4 15 | syl5com |  |-  ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( Rel R -> ( R |` U. U. R ) = R ) ) | 
						
							| 17 | 2 3 16 | sylancl |  |-  ( Rel R -> ( Rel R -> ( R |` U. U. R ) = R ) ) | 
						
							| 18 | 17 | pm2.43i |  |-  ( Rel R -> ( R |` U. U. R ) = R ) |