Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | relsdom | |- Rel ~< |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom | |- Rel ~<_ |
|
2 | reldif | |- ( Rel ~<_ -> Rel ( ~<_ \ ~~ ) ) |
|
3 | df-sdom | |- ~< = ( ~<_ \ ~~ ) |
|
4 | 3 | releqi | |- ( Rel ~< <-> Rel ( ~<_ \ ~~ ) ) |
5 | 2 4 | sylibr | |- ( Rel ~<_ -> Rel ~< ) |
6 | 1 5 | ax-mp | |- Rel ~< |