Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relsn.1 | |- A e. _V |
|
| Assertion | relsn | |- ( Rel { A } <-> A e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsn.1 | |- A e. _V |
|
| 2 | relsng | |- ( A e. _V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( Rel { A } <-> A e. ( _V X. _V ) ) |