Metamath Proof Explorer


Theorem relsn2

Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022)

Ref Expression
Assertion relsn2
|- ( A e. V -> ( Rel { A } <-> dom { A } =/= (/) ) )

Proof

Step Hyp Ref Expression
1 relsng
 |-  ( A e. V -> ( Rel { A } <-> A e. ( _V X. _V ) ) )
2 dmsnn0
 |-  ( A e. ( _V X. _V ) <-> dom { A } =/= (/) )
3 1 2 bitrdi
 |-  ( A e. V -> ( Rel { A } <-> dom { A } =/= (/) ) )