| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsng |
|- ( A e. _V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
| 2 |
1
|
biimpcd |
|- ( Rel { A } -> ( A e. _V -> A e. ( _V X. _V ) ) ) |
| 3 |
|
imor |
|- ( ( A e. _V -> A e. ( _V X. _V ) ) <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
| 4 |
2 3
|
sylib |
|- ( Rel { A } -> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
| 5 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
| 6 |
|
rel0 |
|- Rel (/) |
| 7 |
|
releq |
|- ( { A } = (/) -> ( Rel { A } <-> Rel (/) ) ) |
| 8 |
6 7
|
mpbiri |
|- ( { A } = (/) -> Rel { A } ) |
| 9 |
5 8
|
sylbi |
|- ( -. A e. _V -> Rel { A } ) |
| 10 |
|
relsng |
|- ( A e. ( _V X. _V ) -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
| 11 |
10
|
ibir |
|- ( A e. ( _V X. _V ) -> Rel { A } ) |
| 12 |
9 11
|
jaoi |
|- ( ( -. A e. _V \/ A e. ( _V X. _V ) ) -> Rel { A } ) |
| 13 |
4 12
|
impbii |
|- ( Rel { A } <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |