Step |
Hyp |
Ref |
Expression |
1 |
|
relsng |
|- ( A e. _V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
2 |
1
|
biimpcd |
|- ( Rel { A } -> ( A e. _V -> A e. ( _V X. _V ) ) ) |
3 |
|
imor |
|- ( ( A e. _V -> A e. ( _V X. _V ) ) <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
4 |
2 3
|
sylib |
|- ( Rel { A } -> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |
5 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
6 |
|
rel0 |
|- Rel (/) |
7 |
|
releq |
|- ( { A } = (/) -> ( Rel { A } <-> Rel (/) ) ) |
8 |
6 7
|
mpbiri |
|- ( { A } = (/) -> Rel { A } ) |
9 |
5 8
|
sylbi |
|- ( -. A e. _V -> Rel { A } ) |
10 |
|
relsng |
|- ( A e. ( _V X. _V ) -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
11 |
10
|
ibir |
|- ( A e. ( _V X. _V ) -> Rel { A } ) |
12 |
9 11
|
jaoi |
|- ( ( -. A e. _V \/ A e. ( _V X. _V ) ) -> Rel { A } ) |
13 |
4 12
|
impbii |
|- ( Rel { A } <-> ( -. A e. _V \/ A e. ( _V X. _V ) ) ) |