Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013) (Revised by BJ, 12-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | relsng | |- ( A e. V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel | |- ( Rel { A } <-> { A } C_ ( _V X. _V ) ) |
|
2 | snssg | |- ( A e. V -> ( A e. ( _V X. _V ) <-> { A } C_ ( _V X. _V ) ) ) |
|
3 | 1 2 | bitr4id | |- ( A e. V -> ( Rel { A } <-> A e. ( _V X. _V ) ) ) |