| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( Rel A -> Rel A ) |
| 2 |
|
19.8a |
|- ( <. x , y >. e. A -> E. y <. x , y >. e. A ) |
| 3 |
|
19.8a |
|- ( <. x , y >. e. A -> E. x <. x , y >. e. A ) |
| 4 |
|
opelxp |
|- ( <. x , y >. e. ( dom A X. ran A ) <-> ( x e. dom A /\ y e. ran A ) ) |
| 5 |
|
vex |
|- x e. _V |
| 6 |
5
|
eldm2 |
|- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 7 |
|
vex |
|- y e. _V |
| 8 |
7
|
elrn2 |
|- ( y e. ran A <-> E. x <. x , y >. e. A ) |
| 9 |
6 8
|
anbi12i |
|- ( ( x e. dom A /\ y e. ran A ) <-> ( E. y <. x , y >. e. A /\ E. x <. x , y >. e. A ) ) |
| 10 |
4 9
|
bitri |
|- ( <. x , y >. e. ( dom A X. ran A ) <-> ( E. y <. x , y >. e. A /\ E. x <. x , y >. e. A ) ) |
| 11 |
2 3 10
|
sylanbrc |
|- ( <. x , y >. e. A -> <. x , y >. e. ( dom A X. ran A ) ) |
| 12 |
11
|
a1i |
|- ( Rel A -> ( <. x , y >. e. A -> <. x , y >. e. ( dom A X. ran A ) ) ) |
| 13 |
1 12
|
relssdv |
|- ( Rel A -> A C_ ( dom A X. ran A ) ) |