Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relssdv.1 | |- ( ph -> Rel A ) | |
| relssdv.2 | |- ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) ) | ||
| Assertion | relssdv | |- ( ph -> A C_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relssdv.1 | |- ( ph -> Rel A ) | |
| 2 | relssdv.2 | |- ( ph -> ( <. x , y >. e. A -> <. x , y >. e. B ) ) | |
| 3 | 2 | alrimivv | |- ( ph -> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) | 
| 4 | ssrel | |- ( Rel A -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) ) | |
| 5 | 1 4 | syl | |- ( ph -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) ) | 
| 6 | 3 5 | mpbird | |- ( ph -> A C_ B ) |