Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relssi.1 | |- Rel A |
|
| relssi.2 | |- ( <. x , y >. e. A -> <. x , y >. e. B ) |
||
| Assertion | relssi | |- A C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssi.1 | |- Rel A |
|
| 2 | relssi.2 | |- ( <. x , y >. e. A -> <. x , y >. e. B ) |
|
| 3 | ssrel | |- ( Rel A -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) ) |
|
| 4 | 1 3 | ax-mp | |- ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) |
| 5 | 2 | ax-gen | |- A. y ( <. x , y >. e. A -> <. x , y >. e. B ) |
| 6 | 4 5 | mpgbir | |- A C_ B |