Metamath Proof Explorer


Theorem relssi

Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998)

Ref Expression
Hypotheses relssi.1
|- Rel A
relssi.2
|- ( <. x , y >. e. A -> <. x , y >. e. B )
Assertion relssi
|- A C_ B

Proof

Step Hyp Ref Expression
1 relssi.1
 |-  Rel A
2 relssi.2
 |-  ( <. x , y >. e. A -> <. x , y >. e. B )
3 ssrel
 |-  ( Rel A -> ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) ) )
4 1 3 ax-mp
 |-  ( A C_ B <-> A. x A. y ( <. x , y >. e. A -> <. x , y >. e. B ) )
5 2 ax-gen
 |-  A. y ( <. x , y >. e. A -> <. x , y >. e. B )
6 4 5 mpgbir
 |-  A C_ B