Metamath Proof Explorer


Theorem reltpos

Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion reltpos
|- Rel tpos F

Proof

Step Hyp Ref Expression
1 tposssxp
 |-  tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F )
2 relxp
 |-  Rel ( ( `' dom F u. { (/) } ) X. ran F )
3 relss
 |-  ( tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) -> ( Rel ( ( `' dom F u. { (/) } ) X. ran F ) -> Rel tpos F ) )
4 1 2 3 mp2
 |-  Rel tpos F