Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | reltre | |- A. x e. RR E. y e. RR y < x |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2rem | |- ( x e. RR -> ( x - 1 ) e. RR ) |
|
2 | breq1 | |- ( y = ( x - 1 ) -> ( y < x <-> ( x - 1 ) < x ) ) |
|
3 | 2 | adantl | |- ( ( x e. RR /\ y = ( x - 1 ) ) -> ( y < x <-> ( x - 1 ) < x ) ) |
4 | ltm1 | |- ( x e. RR -> ( x - 1 ) < x ) |
|
5 | 1 3 4 | rspcedvd | |- ( x e. RR -> E. y e. RR y < x ) |
6 | 5 | rgen | |- A. x e. RR E. y e. RR y < x |