Metamath Proof Explorer


Theorem reltre

Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltre
|- A. x e. RR E. y e. RR y < x

Proof

Step Hyp Ref Expression
1 peano2rem
 |-  ( x e. RR -> ( x - 1 ) e. RR )
2 breq1
 |-  ( y = ( x - 1 ) -> ( y < x <-> ( x - 1 ) < x ) )
3 2 adantl
 |-  ( ( x e. RR /\ y = ( x - 1 ) ) -> ( y < x <-> ( x - 1 ) < x ) )
4 ltm1
 |-  ( x e. RR -> ( x - 1 ) < x )
5 1 3 4 rspcedvd
 |-  ( x e. RR -> E. y e. RR y < x )
6 5 rgen
 |-  A. x e. RR E. y e. RR y < x