Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
2 |
|
reltre |
|- A. x e. RR E. y e. RR y < x |
3 |
2
|
rspec |
|- ( x e. RR -> E. y e. RR y < x ) |
4 |
3
|
a1d |
|- ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) ) |
5 |
|
breq1 |
|- ( y = 0 -> ( y < x <-> 0 < x ) ) |
6 |
|
0red |
|- ( x = +oo -> 0 e. RR ) |
7 |
|
0ltpnf |
|- 0 < +oo |
8 |
|
breq2 |
|- ( x = +oo -> ( 0 < x <-> 0 < +oo ) ) |
9 |
7 8
|
mpbiri |
|- ( x = +oo -> 0 < x ) |
10 |
5 6 9
|
rspcedvdw |
|- ( x = +oo -> E. y e. RR y < x ) |
11 |
10
|
a1d |
|- ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) ) |
12 |
|
breq2 |
|- ( x = -oo -> ( -oo < x <-> -oo < -oo ) ) |
13 |
|
mnfxr |
|- -oo e. RR* |
14 |
|
nltmnf |
|- ( -oo e. RR* -> -. -oo < -oo ) |
15 |
14
|
pm2.21d |
|- ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) ) |
16 |
13 15
|
ax-mp |
|- ( -oo < -oo -> E. y e. RR y < x ) |
17 |
12 16
|
biimtrdi |
|- ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) ) |
18 |
4 11 17
|
3jaoi |
|- ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) ) |
19 |
1 18
|
sylbi |
|- ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) ) |
20 |
19
|
rgen |
|- A. x e. RR* ( -oo < x -> E. y e. RR y < x ) |