| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxr |  |-  ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) | 
						
							| 2 |  | reltre |  |-  A. x e. RR E. y e. RR y < x | 
						
							| 3 | 2 | rspec |  |-  ( x e. RR -> E. y e. RR y < x ) | 
						
							| 4 | 3 | a1d |  |-  ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) ) | 
						
							| 5 |  | breq1 |  |-  ( y = 0 -> ( y < x <-> 0 < x ) ) | 
						
							| 6 |  | 0red |  |-  ( x = +oo -> 0 e. RR ) | 
						
							| 7 |  | 0ltpnf |  |-  0 < +oo | 
						
							| 8 |  | breq2 |  |-  ( x = +oo -> ( 0 < x <-> 0 < +oo ) ) | 
						
							| 9 | 7 8 | mpbiri |  |-  ( x = +oo -> 0 < x ) | 
						
							| 10 | 5 6 9 | rspcedvdw |  |-  ( x = +oo -> E. y e. RR y < x ) | 
						
							| 11 | 10 | a1d |  |-  ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) ) | 
						
							| 12 |  | breq2 |  |-  ( x = -oo -> ( -oo < x <-> -oo < -oo ) ) | 
						
							| 13 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 14 |  | nltmnf |  |-  ( -oo e. RR* -> -. -oo < -oo ) | 
						
							| 15 | 14 | pm2.21d |  |-  ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) ) | 
						
							| 16 | 13 15 | ax-mp |  |-  ( -oo < -oo -> E. y e. RR y < x ) | 
						
							| 17 | 12 16 | biimtrdi |  |-  ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) ) | 
						
							| 18 | 4 11 17 | 3jaoi |  |-  ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) ) | 
						
							| 19 | 1 18 | sylbi |  |-  ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) ) | 
						
							| 20 | 19 | rgen |  |-  A. x e. RR* ( -oo < x -> E. y e. RR y < x ) |