Metamath Proof Explorer


Theorem reltxrnmnf

Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltxrnmnf
|- A. x e. RR* ( -oo < x -> E. y e. RR y < x )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) )
2 reltre
 |-  A. x e. RR E. y e. RR y < x
3 2 rspec
 |-  ( x e. RR -> E. y e. RR y < x )
4 3 a1d
 |-  ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) )
5 breq1
 |-  ( y = 0 -> ( y < x <-> 0 < x ) )
6 0red
 |-  ( x = +oo -> 0 e. RR )
7 0ltpnf
 |-  0 < +oo
8 breq2
 |-  ( x = +oo -> ( 0 < x <-> 0 < +oo ) )
9 7 8 mpbiri
 |-  ( x = +oo -> 0 < x )
10 5 6 9 rspcedvdw
 |-  ( x = +oo -> E. y e. RR y < x )
11 10 a1d
 |-  ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) )
12 breq2
 |-  ( x = -oo -> ( -oo < x <-> -oo < -oo ) )
13 mnfxr
 |-  -oo e. RR*
14 nltmnf
 |-  ( -oo e. RR* -> -. -oo < -oo )
15 14 pm2.21d
 |-  ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) )
16 13 15 ax-mp
 |-  ( -oo < -oo -> E. y e. RR y < x )
17 12 16 biimtrdi
 |-  ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) )
18 4 11 17 3jaoi
 |-  ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) )
19 1 18 sylbi
 |-  ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) )
20 19 rgen
 |-  A. x e. RR* ( -oo < x -> E. y e. RR y < x )