Step |
Hyp |
Ref |
Expression |
1 |
|
remet.1 |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
|
df-ov |
|- ( A D B ) = ( D ` <. A , B >. ) |
3 |
1
|
fveq1i |
|- ( D ` <. A , B >. ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) |
4 |
2 3
|
eqtri |
|- ( A D B ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) |
5 |
|
opelxpi |
|- ( ( A e. RR /\ B e. RR ) -> <. A , B >. e. ( RR X. RR ) ) |
6 |
5
|
fvresd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) = ( ( abs o. - ) ` <. A , B >. ) ) |
7 |
|
df-ov |
|- ( A ( abs o. - ) B ) = ( ( abs o. - ) ` <. A , B >. ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
|
recn |
|- ( B e. RR -> B e. CC ) |
10 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
11 |
10
|
cnmetdval |
|- ( ( A e. CC /\ B e. CC ) -> ( A ( abs o. - ) B ) = ( abs ` ( A - B ) ) ) |
12 |
8 9 11
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A ( abs o. - ) B ) = ( abs ` ( A - B ) ) ) |
13 |
7 12
|
eqtr3id |
|- ( ( A e. RR /\ B e. RR ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( A - B ) ) ) |
14 |
6 13
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) ` <. A , B >. ) = ( abs ` ( A - B ) ) ) |
15 |
4 14
|
syl5eq |
|- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |