Metamath Proof Explorer


Theorem remsqsqrt

Description: Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion remsqsqrt
|- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A )

Proof

Step Hyp Ref Expression
1 resqrtcl
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR )
2 1 recnd
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC )
3 2 sqvald
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = ( ( sqrt ` A ) x. ( sqrt ` A ) ) )
4 resqrtth
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A )
5 3 4 eqtr3d
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A )