Description: Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | remsqsqrt | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
2 | 1 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
3 | 2 | sqvald | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = ( ( sqrt ` A ) x. ( sqrt ` A ) ) ) |
4 | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
5 | 3 4 | eqtr3d | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) x. ( sqrt ` A ) ) = A ) |