Description: Real part of a product. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crred.1 | |- ( ph -> A e. RR ) |
|
remul2d.2 | |- ( ph -> B e. CC ) |
||
Assertion | remul2d | |- ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crred.1 | |- ( ph -> A e. RR ) |
|
2 | remul2d.2 | |- ( ph -> B e. CC ) |
|
3 | remul2 | |- ( ( A e. RR /\ B e. CC ) -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |