Description: Real part of a product. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crred.1 | |- ( ph -> A e. RR ) |
|
| remul2d.2 | |- ( ph -> B e. CC ) |
||
| Assertion | remul2d | |- ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crred.1 | |- ( ph -> A e. RR ) |
|
| 2 | remul2d.2 | |- ( ph -> B e. CC ) |
|
| 3 | remul2 | |- ( ( A e. RR /\ B e. CC ) -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) ) |