Metamath Proof Explorer


Theorem remul2d

Description: Real part of a product. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1
|- ( ph -> A e. RR )
remul2d.2
|- ( ph -> B e. CC )
Assertion remul2d
|- ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) )

Proof

Step Hyp Ref Expression
1 crred.1
 |-  ( ph -> A e. RR )
2 remul2d.2
 |-  ( ph -> B e. CC )
3 remul2
 |-  ( ( A e. RR /\ B e. CC ) -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( Re ` ( A x. B ) ) = ( A x. ( Re ` B ) ) )