Metamath Proof Explorer


Theorem remulcl

Description: Alias for ax-mulrcl , for naming consistency with remulcli . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion remulcl
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR )

Proof

Step Hyp Ref Expression
1 ax-mulrcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR )