Metamath Proof Explorer


Theorem remulcli

Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997)

Ref Expression
Hypotheses recni.1
|- A e. RR
axri.2
|- B e. RR
Assertion remulcli
|- ( A x. B ) e. RR

Proof

Step Hyp Ref Expression
1 recni.1
 |-  A e. RR
2 axri.2
 |-  B e. RR
3 remulcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR )
4 1 2 3 mp2an
 |-  ( A x. B ) e. RR