Metamath Proof Explorer


Theorem remulg

Description: The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion remulg
|- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) )

Proof

Step Hyp Ref Expression
1 recn
 |-  ( x e. RR -> x e. CC )
2 readdcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR )
3 renegcl
 |-  ( x e. RR -> -u x e. RR )
4 1re
 |-  1 e. RR
5 1 2 3 4 cnsubglem
 |-  RR e. ( SubGrp ` CCfld )
6 eqid
 |-  ( .g ` CCfld ) = ( .g ` CCfld )
7 df-refld
 |-  RRfld = ( CCfld |`s RR )
8 eqid
 |-  ( .g ` RRfld ) = ( .g ` RRfld )
9 6 7 8 subgmulg
 |-  ( ( RR e. ( SubGrp ` CCfld ) /\ N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) )
10 5 9 mp3an1
 |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) )
11 simpr
 |-  ( ( N e. ZZ /\ A e. RR ) -> A e. RR )
12 11 recnd
 |-  ( ( N e. ZZ /\ A e. RR ) -> A e. CC )
13 cnfldmulg
 |-  ( ( N e. ZZ /\ A e. CC ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) )
14 12 13 syldan
 |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) )
15 10 14 eqtr3d
 |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) )