Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( x e. RR -> x e. CC ) |
2 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
3 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
4 |
|
1re |
|- 1 e. RR |
5 |
1 2 3 4
|
cnsubglem |
|- RR e. ( SubGrp ` CCfld ) |
6 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
7 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
8 |
|
eqid |
|- ( .g ` RRfld ) = ( .g ` RRfld ) |
9 |
6 7 8
|
subgmulg |
|- ( ( RR e. ( SubGrp ` CCfld ) /\ N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) |
10 |
5 9
|
mp3an1 |
|- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) |
11 |
|
simpr |
|- ( ( N e. ZZ /\ A e. RR ) -> A e. RR ) |
12 |
11
|
recnd |
|- ( ( N e. ZZ /\ A e. RR ) -> A e. CC ) |
13 |
|
cnfldmulg |
|- ( ( N e. ZZ /\ A e. CC ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) |
14 |
12 13
|
syldan |
|- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) |
15 |
10 14
|
eqtr3d |
|- ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) ) |