| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> A C_ RR ) |
| 2 |
|
simpl2 |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> B e. RR ) |
| 3 |
|
rexn0 |
|- ( E. y e. A ( abs ` ( y - B ) ) < x -> A =/= (/) ) |
| 4 |
3
|
ralimi |
|- ( A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x -> A. x e. RR+ A =/= (/) ) |
| 5 |
|
1rp |
|- 1 e. RR+ |
| 6 |
|
ne0i |
|- ( 1 e. RR+ -> RR+ =/= (/) ) |
| 7 |
|
r19.3rzv |
|- ( RR+ =/= (/) -> ( A =/= (/) <-> A. x e. RR+ A =/= (/) ) ) |
| 8 |
5 6 7
|
mp2b |
|- ( A =/= (/) <-> A. x e. RR+ A =/= (/) ) |
| 9 |
4 8
|
sylibr |
|- ( A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x -> A =/= (/) ) |
| 10 |
9
|
adantl |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> A =/= (/) ) |
| 11 |
|
simpl3 |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> -. B e. A ) |
| 12 |
10 11
|
jca |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> ( A =/= (/) /\ -. B e. A ) ) |
| 13 |
|
simpr |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) |
| 14 |
|
rencldnfilem |
|- ( ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> -. A e. Fin ) |
| 15 |
1 2 12 13 14
|
syl31anc |
|- ( ( ( A C_ RR /\ B e. RR /\ -. B e. A ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> -. A e. Fin ) |