| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( a = c -> ( a = ( abs ` ( b - B ) ) <-> c = ( abs ` ( b - B ) ) ) ) |
| 2 |
1
|
rexbidv |
|- ( a = c -> ( E. b e. A a = ( abs ` ( b - B ) ) <-> E. b e. A c = ( abs ` ( b - B ) ) ) ) |
| 3 |
2
|
elrab |
|- ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } <-> ( c e. RR /\ E. b e. A c = ( abs ` ( b - B ) ) ) ) |
| 4 |
|
simp-4l |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> A C_ RR ) |
| 5 |
|
simpr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. A ) |
| 6 |
4 5
|
sseldd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> b e. CC ) |
| 8 |
|
simp-4r |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> B e. RR ) |
| 9 |
8
|
recnd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> B e. CC ) |
| 10 |
7 9
|
subcld |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( b - B ) e. CC ) |
| 11 |
|
simprr |
|- ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> -. B e. A ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> -. B e. A ) |
| 13 |
|
nelneq |
|- ( ( b e. A /\ -. B e. A ) -> -. b = B ) |
| 14 |
5 12 13
|
syl2anc |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> -. b = B ) |
| 15 |
|
subeq0 |
|- ( ( b e. CC /\ B e. CC ) -> ( ( b - B ) = 0 <-> b = B ) ) |
| 16 |
15
|
necon3abid |
|- ( ( b e. CC /\ B e. CC ) -> ( ( b - B ) =/= 0 <-> -. b = B ) ) |
| 17 |
7 9 16
|
syl2anc |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( ( b - B ) =/= 0 <-> -. b = B ) ) |
| 18 |
14 17
|
mpbird |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( b - B ) =/= 0 ) |
| 19 |
10 18
|
absrpcld |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( abs ` ( b - B ) ) e. RR+ ) |
| 20 |
|
eleq1 |
|- ( c = ( abs ` ( b - B ) ) -> ( c e. RR+ <-> ( abs ` ( b - B ) ) e. RR+ ) ) |
| 21 |
19 20
|
syl5ibrcom |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) /\ b e. A ) -> ( c = ( abs ` ( b - B ) ) -> c e. RR+ ) ) |
| 22 |
21
|
rexlimdva |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ c e. RR ) -> ( E. b e. A c = ( abs ` ( b - B ) ) -> c e. RR+ ) ) |
| 23 |
22
|
expimpd |
|- ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( ( c e. RR /\ E. b e. A c = ( abs ` ( b - B ) ) ) -> c e. RR+ ) ) |
| 24 |
3 23
|
biimtrid |
|- ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> c e. RR+ ) ) |
| 25 |
24
|
ssrdv |
|- ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR+ ) |
| 26 |
25
|
adantr |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR+ ) |
| 27 |
|
abrexfi |
|- ( A e. Fin -> { a | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) |
| 28 |
|
rabssab |
|- { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ { a | E. b e. A a = ( abs ` ( b - B ) ) } |
| 29 |
|
ssfi |
|- ( ( { a | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ { a | E. b e. A a = ( abs ` ( b - B ) ) } ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) |
| 30 |
27 28 29
|
sylancl |
|- ( A e. Fin -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) |
| 31 |
30
|
adantl |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin ) |
| 32 |
|
simplrl |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> A =/= (/) ) |
| 33 |
|
n0 |
|- ( A =/= (/) <-> E. y y e. A ) |
| 34 |
32 33
|
sylib |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. y y e. A ) |
| 35 |
|
simp-4l |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> A C_ RR ) |
| 36 |
|
simpr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. A ) |
| 37 |
35 36
|
sseldd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. RR ) |
| 38 |
37
|
recnd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> y e. CC ) |
| 39 |
|
simp-4r |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> B e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> B e. CC ) |
| 41 |
38 40
|
subcld |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( y - B ) e. CC ) |
| 42 |
41
|
abscld |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( abs ` ( y - B ) ) e. RR ) |
| 43 |
|
eqid |
|- ( abs ` ( y - B ) ) = ( abs ` ( y - B ) ) |
| 44 |
|
fvoveq1 |
|- ( b = y -> ( abs ` ( b - B ) ) = ( abs ` ( y - B ) ) ) |
| 45 |
44
|
rspceeqv |
|- ( ( y e. A /\ ( abs ` ( y - B ) ) = ( abs ` ( y - B ) ) ) -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) |
| 46 |
43 45
|
mpan2 |
|- ( y e. A -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) |
| 48 |
|
eqeq1 |
|- ( a = ( abs ` ( y - B ) ) -> ( a = ( abs ` ( b - B ) ) <-> ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) |
| 49 |
48
|
rexbidv |
|- ( a = ( abs ` ( y - B ) ) -> ( E. b e. A a = ( abs ` ( b - B ) ) <-> E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) |
| 50 |
49
|
elrab |
|- ( ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } <-> ( ( abs ` ( y - B ) ) e. RR /\ E. b e. A ( abs ` ( y - B ) ) = ( abs ` ( b - B ) ) ) ) |
| 51 |
42 47 50
|
sylanbrc |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) |
| 52 |
51
|
ne0d |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) |
| 53 |
34 52
|
exlimddv |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) |
| 54 |
|
ssrab2 |
|- { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR |
| 55 |
54
|
a1i |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) |
| 56 |
|
gtso |
|- `' < Or RR |
| 57 |
|
fisupcl |
|- ( ( `' < Or RR /\ ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) |
| 58 |
56 57
|
mpan |
|- ( ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) |
| 59 |
31 53 55 58
|
syl3anc |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) |
| 60 |
26 59
|
sseldd |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR+ ) |
| 61 |
54
|
a1i |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR ) |
| 62 |
|
soss |
|- ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR -> ( `' < Or RR -> `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) ) |
| 63 |
54 56 62
|
mp2 |
|- `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } |
| 64 |
63
|
a1i |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) |
| 65 |
|
fisupg |
|- ( ( `' < Or { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } e. Fin /\ { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } =/= (/) ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) ) |
| 66 |
64 31 53 65
|
syl3anc |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) ) |
| 67 |
|
elrabi |
|- ( c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> c e. RR ) |
| 68 |
|
elrabi |
|- ( d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -> d e. RR ) |
| 69 |
|
vex |
|- c e. _V |
| 70 |
|
vex |
|- d e. _V |
| 71 |
69 70
|
brcnv |
|- ( c `' < d <-> d < c ) |
| 72 |
71
|
notbii |
|- ( -. c `' < d <-> -. d < c ) |
| 73 |
|
lenlt |
|- ( ( c e. RR /\ d e. RR ) -> ( c <_ d <-> -. d < c ) ) |
| 74 |
73
|
biimprd |
|- ( ( c e. RR /\ d e. RR ) -> ( -. d < c -> c <_ d ) ) |
| 75 |
72 74
|
biimtrid |
|- ( ( c e. RR /\ d e. RR ) -> ( -. c `' < d -> c <_ d ) ) |
| 76 |
75
|
adantll |
|- ( ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) /\ d e. RR ) -> ( -. c `' < d -> c <_ d ) ) |
| 77 |
68 76
|
sylan2 |
|- ( ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) /\ d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> ( -. c `' < d -> c <_ d ) ) |
| 78 |
77
|
ralimdva |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) -> ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) |
| 79 |
78
|
adantrd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. RR ) -> ( ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) |
| 80 |
67 79
|
sylan2 |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> ( ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) |
| 81 |
80
|
reximdva |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> ( E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } -. c `' < d /\ A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ( d `' < c -> E. x e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } d `' < x ) ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) ) |
| 82 |
66 81
|
mpd |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) |
| 83 |
82
|
adantr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d ) |
| 84 |
|
lbinfle |
|- ( ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } C_ RR /\ E. c e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } A. d e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } c <_ d /\ ( abs ` ( y - B ) ) e. { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } ) -> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) |
| 85 |
61 83 51 84
|
syl3anc |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) |
| 86 |
|
df-inf |
|- inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) |
| 87 |
86
|
eqcomi |
|- sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) = inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) |
| 88 |
87
|
breq1i |
|- ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) <-> inf ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , < ) <_ ( abs ` ( y - B ) ) ) |
| 89 |
85 88
|
sylibr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) ) |
| 90 |
54 59
|
sselid |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR ) |
| 91 |
90
|
adantr |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR ) |
| 92 |
91 42
|
lenltd |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) <_ ( abs ` ( y - B ) ) <-> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) |
| 93 |
89 92
|
mpbid |
|- ( ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) /\ y e. A ) -> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) |
| 94 |
93
|
ralrimiva |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) |
| 95 |
|
breq2 |
|- ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( ( abs ` ( y - B ) ) < x <-> ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) |
| 96 |
95
|
notbid |
|- ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( -. ( abs ` ( y - B ) ) < x <-> -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) |
| 97 |
96
|
ralbidv |
|- ( x = sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) -> ( A. y e. A -. ( abs ` ( y - B ) ) < x <-> A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) ) |
| 98 |
97
|
rspcev |
|- ( ( sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) e. RR+ /\ A. y e. A -. ( abs ` ( y - B ) ) < sup ( { a e. RR | E. b e. A a = ( abs ` ( b - B ) ) } , RR , `' < ) ) -> E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x ) |
| 99 |
60 94 98
|
syl2anc |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x ) |
| 100 |
|
ralnex |
|- ( A. y e. A -. ( abs ` ( y - B ) ) < x <-> -. E. y e. A ( abs ` ( y - B ) ) < x ) |
| 101 |
100
|
rexbii |
|- ( E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x <-> E. x e. RR+ -. E. y e. A ( abs ` ( y - B ) ) < x ) |
| 102 |
|
rexnal |
|- ( E. x e. RR+ -. E. y e. A ( abs ` ( y - B ) ) < x <-> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) |
| 103 |
101 102
|
bitri |
|- ( E. x e. RR+ A. y e. A -. ( abs ` ( y - B ) ) < x <-> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) |
| 104 |
99 103
|
sylib |
|- ( ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) /\ A e. Fin ) -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) |
| 105 |
104
|
ex |
|- ( ( ( A C_ RR /\ B e. RR ) /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A e. Fin -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) ) |
| 106 |
105
|
3impa |
|- ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A e. Fin -> -. A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) ) |
| 107 |
106
|
con2d |
|- ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) -> ( A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x -> -. A e. Fin ) ) |
| 108 |
107
|
imp |
|- ( ( ( A C_ RR /\ B e. RR /\ ( A =/= (/) /\ -. B e. A ) ) /\ A. x e. RR+ E. y e. A ( abs ` ( y - B ) ) < x ) -> -. A e. Fin ) |