Metamath Proof Explorer


Theorem renegcl

Description: Closure law for negative of reals. The weak deduction theorem dedth is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli , to an antecedent. (Contributed by NM, 20-Jan-1997) (Proof modification is discouraged.)

Ref Expression
Assertion renegcl
|- ( A e. RR -> -u A e. RR )

Proof

Step Hyp Ref Expression
1 negeq
 |-  ( A = if ( A e. RR , A , 1 ) -> -u A = -u if ( A e. RR , A , 1 ) )
2 1 eleq1d
 |-  ( A = if ( A e. RR , A , 1 ) -> ( -u A e. RR <-> -u if ( A e. RR , A , 1 ) e. RR ) )
3 1re
 |-  1 e. RR
4 3 elimel
 |-  if ( A e. RR , A , 1 ) e. RR
5 4 renegcli
 |-  -u if ( A e. RR , A , 1 ) e. RR
6 2 5 dedth
 |-  ( A e. RR -> -u A e. RR )