| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl.1 |
|- A e. RR |
| 2 |
|
ax-rnegex |
|- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |
| 3 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 4 |
|
df-neg |
|- -u A = ( 0 - A ) |
| 5 |
4
|
eqeq1i |
|- ( -u A = x <-> ( 0 - A ) = x ) |
| 6 |
|
0cn |
|- 0 e. CC |
| 7 |
1
|
recni |
|- A e. CC |
| 8 |
|
subadd |
|- ( ( 0 e. CC /\ A e. CC /\ x e. CC ) -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) ) |
| 9 |
6 7 8
|
mp3an12 |
|- ( x e. CC -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) ) |
| 10 |
5 9
|
bitrid |
|- ( x e. CC -> ( -u A = x <-> ( A + x ) = 0 ) ) |
| 11 |
3 10
|
syl |
|- ( x e. RR -> ( -u A = x <-> ( A + x ) = 0 ) ) |
| 12 |
|
eleq1a |
|- ( x e. RR -> ( -u A = x -> -u A e. RR ) ) |
| 13 |
11 12
|
sylbird |
|- ( x e. RR -> ( ( A + x ) = 0 -> -u A e. RR ) ) |
| 14 |
13
|
rexlimiv |
|- ( E. x e. RR ( A + x ) = 0 -> -u A e. RR ) |
| 15 |
1 2 14
|
mp2b |
|- -u A e. RR |