| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							renegcl.1 | 
							 |-  A e. RR  | 
						
						
							| 2 | 
							
								
							 | 
							ax-rnegex | 
							 |-  ( A e. RR -> E. x e. RR ( A + x ) = 0 )  | 
						
						
							| 3 | 
							
								
							 | 
							recn | 
							 |-  ( x e. RR -> x e. CC )  | 
						
						
							| 4 | 
							
								
							 | 
							df-neg | 
							 |-  -u A = ( 0 - A )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqeq1i | 
							 |-  ( -u A = x <-> ( 0 - A ) = x )  | 
						
						
							| 6 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 7 | 
							
								1
							 | 
							recni | 
							 |-  A e. CC  | 
						
						
							| 8 | 
							
								
							 | 
							subadd | 
							 |-  ( ( 0 e. CC /\ A e. CC /\ x e. CC ) -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							mp3an12 | 
							 |-  ( x e. CC -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							bitrid | 
							 |-  ( x e. CC -> ( -u A = x <-> ( A + x ) = 0 ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl | 
							 |-  ( x e. RR -> ( -u A = x <-> ( A + x ) = 0 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eleq1a | 
							 |-  ( x e. RR -> ( -u A = x -> -u A e. RR ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylbird | 
							 |-  ( x e. RR -> ( ( A + x ) = 0 -> -u A e. RR ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rexlimiv | 
							 |-  ( E. x e. RR ( A + x ) = 0 -> -u A e. RR )  | 
						
						
							| 15 | 
							
								1 2 14
							 | 
							mp2b | 
							 |-  -u A e. RR  |