Description: Real part of negative. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recld.1 | |- ( ph -> A e. CC ) |
|
Assertion | renegd | |- ( ph -> ( Re ` -u A ) = -u ( Re ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | reneg | |- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( Re ` -u A ) = -u ( Re ` A ) ) |