| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 4 |
1 2 3
|
sylancr |
|- ( A e. RR -> ( _i x. A ) e. CC ) |
| 5 |
|
rpre |
|- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
| 6 |
|
rereb |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR <-> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
| 7 |
5 6
|
imbitrid |
|- ( ( _i x. A ) e. CC -> ( ( _i x. A ) e. RR+ -> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
| 8 |
4 7
|
syl |
|- ( A e. RR -> ( ( _i x. A ) e. RR+ -> ( Re ` ( _i x. A ) ) = ( _i x. A ) ) ) |
| 9 |
4
|
addlidd |
|- ( A e. RR -> ( 0 + ( _i x. A ) ) = ( _i x. A ) ) |
| 10 |
9
|
fveq2d |
|- ( A e. RR -> ( Re ` ( 0 + ( _i x. A ) ) ) = ( Re ` ( _i x. A ) ) ) |
| 11 |
|
0re |
|- 0 e. RR |
| 12 |
|
crre |
|- ( ( 0 e. RR /\ A e. RR ) -> ( Re ` ( 0 + ( _i x. A ) ) ) = 0 ) |
| 13 |
11 12
|
mpan |
|- ( A e. RR -> ( Re ` ( 0 + ( _i x. A ) ) ) = 0 ) |
| 14 |
10 13
|
eqtr3d |
|- ( A e. RR -> ( Re ` ( _i x. A ) ) = 0 ) |
| 15 |
14
|
eqeq1d |
|- ( A e. RR -> ( ( Re ` ( _i x. A ) ) = ( _i x. A ) <-> 0 = ( _i x. A ) ) ) |
| 16 |
8 15
|
sylibd |
|- ( A e. RR -> ( ( _i x. A ) e. RR+ -> 0 = ( _i x. A ) ) ) |
| 17 |
|
rpne0 |
|- ( ( _i x. A ) e. RR+ -> ( _i x. A ) =/= 0 ) |
| 18 |
17
|
necon2bi |
|- ( ( _i x. A ) = 0 -> -. ( _i x. A ) e. RR+ ) |
| 19 |
18
|
eqcoms |
|- ( 0 = ( _i x. A ) -> -. ( _i x. A ) e. RR+ ) |
| 20 |
16 19
|
syl6 |
|- ( A e. RR -> ( ( _i x. A ) e. RR+ -> -. ( _i x. A ) e. RR+ ) ) |
| 21 |
20
|
pm2.01d |
|- ( A e. RR -> -. ( _i x. A ) e. RR+ ) |
| 22 |
|
df-nel |
|- ( ( _i x. A ) e/ RR+ <-> -. ( _i x. A ) e. RR+ ) |
| 23 |
21 22
|
sylibr |
|- ( A e. RR -> ( _i x. A ) e/ RR+ ) |