Metamath Proof Explorer


Theorem reperf

Description: The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1
|- J = ( TopOpen ` CCfld )
Assertion reperf
|- ( J |`t RR ) e. Perf

Proof

Step Hyp Ref Expression
1 recld2.1
 |-  J = ( TopOpen ` CCfld )
2 readdcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR )
3 ax-resscn
 |-  RR C_ CC
4 1 2 3 reperflem
 |-  ( J |`t RR ) e. Perf