Step |
Hyp |
Ref |
Expression |
1 |
|
recld2.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
reperflem.2 |
|- ( ( u e. S /\ v e. RR ) -> ( u + v ) e. S ) |
3 |
|
reperflem.3 |
|- S C_ CC |
4 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
5 |
3
|
sseli |
|- ( u e. S -> u e. CC ) |
6 |
1
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
7 |
6
|
neibl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ u e. CC ) -> ( n e. ( ( nei ` J ) ` { u } ) <-> ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) ) ) |
8 |
4 5 7
|
sylancr |
|- ( u e. S -> ( n e. ( ( nei ` J ) ` { u } ) <-> ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) ) ) |
9 |
|
ssrin |
|- ( ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) ) |
10 |
2
|
ralrimiva |
|- ( u e. S -> A. v e. RR ( u + v ) e. S ) |
11 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
12 |
11
|
rehalfcld |
|- ( r e. RR+ -> ( r / 2 ) e. RR ) |
13 |
|
oveq2 |
|- ( v = ( r / 2 ) -> ( u + v ) = ( u + ( r / 2 ) ) ) |
14 |
13
|
eleq1d |
|- ( v = ( r / 2 ) -> ( ( u + v ) e. S <-> ( u + ( r / 2 ) ) e. S ) ) |
15 |
14
|
rspccva |
|- ( ( A. v e. RR ( u + v ) e. S /\ ( r / 2 ) e. RR ) -> ( u + ( r / 2 ) ) e. S ) |
16 |
10 12 15
|
syl2an |
|- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. S ) |
17 |
3 16
|
sselid |
|- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. CC ) |
18 |
5
|
adantr |
|- ( ( u e. S /\ r e. RR+ ) -> u e. CC ) |
19 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
20 |
19
|
cnmetdval |
|- ( ( ( u + ( r / 2 ) ) e. CC /\ u e. CC ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( abs ` ( ( u + ( r / 2 ) ) - u ) ) ) |
21 |
17 18 20
|
syl2anc |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( abs ` ( ( u + ( r / 2 ) ) - u ) ) ) |
22 |
|
simpr |
|- ( ( u e. S /\ r e. RR+ ) -> r e. RR+ ) |
23 |
22
|
rphalfcld |
|- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
24 |
23
|
rpcnd |
|- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. CC ) |
25 |
18 24
|
pncan2d |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) - u ) = ( r / 2 ) ) |
26 |
25
|
fveq2d |
|- ( ( u e. S /\ r e. RR+ ) -> ( abs ` ( ( u + ( r / 2 ) ) - u ) ) = ( abs ` ( r / 2 ) ) ) |
27 |
23
|
rpred |
|- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. RR ) |
28 |
23
|
rpge0d |
|- ( ( u e. S /\ r e. RR+ ) -> 0 <_ ( r / 2 ) ) |
29 |
27 28
|
absidd |
|- ( ( u e. S /\ r e. RR+ ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
30 |
21 26 29
|
3eqtrd |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( r / 2 ) ) |
31 |
|
rphalflt |
|- ( r e. RR+ -> ( r / 2 ) < r ) |
32 |
31
|
adantl |
|- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) < r ) |
33 |
30 32
|
eqbrtrd |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) |
34 |
4
|
a1i |
|- ( ( u e. S /\ r e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
35 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
36 |
35
|
adantl |
|- ( ( u e. S /\ r e. RR+ ) -> r e. RR* ) |
37 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( u e. CC /\ ( u + ( r / 2 ) ) e. CC ) ) -> ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) <-> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) ) |
38 |
34 36 18 17 37
|
syl22anc |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) <-> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) ) |
39 |
33 38
|
mpbird |
|- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) ) |
40 |
23
|
rpne0d |
|- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) =/= 0 ) |
41 |
25 40
|
eqnetrd |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) - u ) =/= 0 ) |
42 |
17 18 41
|
subne0ad |
|- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) =/= u ) |
43 |
|
eldifsn |
|- ( ( u + ( r / 2 ) ) e. ( S \ { u } ) <-> ( ( u + ( r / 2 ) ) e. S /\ ( u + ( r / 2 ) ) =/= u ) ) |
44 |
16 42 43
|
sylanbrc |
|- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. ( S \ { u } ) ) |
45 |
|
inelcm |
|- ( ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) /\ ( u + ( r / 2 ) ) e. ( S \ { u } ) ) -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) |
46 |
39 44 45
|
syl2anc |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) |
47 |
|
ssn0 |
|- ( ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) /\ ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) |
48 |
47
|
ex |
|- ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) -> ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
49 |
9 46 48
|
syl2imc |
|- ( ( u e. S /\ r e. RR+ ) -> ( ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
50 |
49
|
rexlimdva |
|- ( u e. S -> ( E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
51 |
50
|
adantld |
|- ( u e. S -> ( ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
52 |
8 51
|
sylbid |
|- ( u e. S -> ( n e. ( ( nei ` J ) ` { u } ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
53 |
52
|
ralrimiv |
|- ( u e. S -> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) |
54 |
1
|
cnfldtop |
|- J e. Top |
55 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
56 |
55
|
toponunii |
|- CC = U. J |
57 |
56
|
islp2 |
|- ( ( J e. Top /\ S C_ CC /\ u e. CC ) -> ( u e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
58 |
54 3 5 57
|
mp3an12i |
|- ( u e. S -> ( u e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
59 |
53 58
|
mpbird |
|- ( u e. S -> u e. ( ( limPt ` J ) ` S ) ) |
60 |
59
|
ssriv |
|- S C_ ( ( limPt ` J ) ` S ) |
61 |
|
eqid |
|- ( J |`t S ) = ( J |`t S ) |
62 |
56 61
|
restperf |
|- ( ( J e. Top /\ S C_ CC ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
63 |
54 3 62
|
mp2an |
|- ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) |
64 |
60 63
|
mpbir |
|- ( J |`t S ) e. Perf |