Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
4
|
a1i |
|- ( ph -> 0 e. NN0 ) |
6 |
1 2 5
|
reprval |
|- ( ph -> ( A ( repr ` 0 ) M ) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) |
7 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
8 |
7
|
sumeq1i |
|- sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = sum_ a e. (/) ( c ` a ) |
9 |
|
sum0 |
|- sum_ a e. (/) ( c ` a ) = 0 |
10 |
8 9
|
eqtri |
|- sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = 0 |
11 |
10
|
eqeq1i |
|- ( sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M <-> 0 = M ) |
12 |
11
|
a1i |
|- ( c = (/) -> ( sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M <-> 0 = M ) ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
snid |
|- (/) e. { (/) } |
15 |
|
nnex |
|- NN e. _V |
16 |
15
|
a1i |
|- ( ph -> NN e. _V ) |
17 |
16 1
|
ssexd |
|- ( ph -> A e. _V ) |
18 |
|
mapdm0 |
|- ( A e. _V -> ( A ^m (/) ) = { (/) } ) |
19 |
17 18
|
syl |
|- ( ph -> ( A ^m (/) ) = { (/) } ) |
20 |
14 19
|
eleqtrrid |
|- ( ph -> (/) e. ( A ^m (/) ) ) |
21 |
7
|
oveq2i |
|- ( A ^m ( 0 ..^ 0 ) ) = ( A ^m (/) ) |
22 |
20 21
|
eleqtrrdi |
|- ( ph -> (/) e. ( A ^m ( 0 ..^ 0 ) ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ M = 0 ) -> (/) e. ( A ^m ( 0 ..^ 0 ) ) ) |
24 |
|
simpr |
|- ( ( ph /\ M = 0 ) -> M = 0 ) |
25 |
24
|
eqcomd |
|- ( ( ph /\ M = 0 ) -> 0 = M ) |
26 |
21 19
|
syl5eq |
|- ( ph -> ( A ^m ( 0 ..^ 0 ) ) = { (/) } ) |
27 |
26
|
eleq2d |
|- ( ph -> ( c e. ( A ^m ( 0 ..^ 0 ) ) <-> c e. { (/) } ) ) |
28 |
27
|
biimpa |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> c e. { (/) } ) |
29 |
|
elsni |
|- ( c e. { (/) } -> c = (/) ) |
30 |
28 29
|
syl |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> c = (/) ) |
31 |
30
|
ad4ant13 |
|- ( ( ( ( ph /\ M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) /\ sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) -> c = (/) ) |
32 |
12 23 25 31
|
rabeqsnd |
|- ( ( ph /\ M = 0 ) -> { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = { (/) } ) |
33 |
32
|
eqcomd |
|- ( ( ph /\ M = 0 ) -> { (/) } = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) |
34 |
10
|
a1i |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = 0 ) |
35 |
|
simplr |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> -. M = 0 ) |
36 |
35
|
neqned |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> M =/= 0 ) |
37 |
36
|
necomd |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> 0 =/= M ) |
38 |
34 37
|
eqnetrd |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> sum_ a e. ( 0 ..^ 0 ) ( c ` a ) =/= M ) |
39 |
38
|
neneqd |
|- ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) |
40 |
39
|
ralrimiva |
|- ( ( ph /\ -. M = 0 ) -> A. c e. ( A ^m ( 0 ..^ 0 ) ) -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) |
41 |
|
rabeq0 |
|- ( { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = (/) <-> A. c e. ( A ^m ( 0 ..^ 0 ) ) -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) |
42 |
40 41
|
sylibr |
|- ( ( ph /\ -. M = 0 ) -> { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = (/) ) |
43 |
42
|
eqcomd |
|- ( ( ph /\ -. M = 0 ) -> (/) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) |
44 |
33 43
|
ifeqda |
|- ( ph -> if ( M = 0 , { (/) } , (/) ) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) |
45 |
6 44
|
eqtr4d |
|- ( ph -> ( A ( repr ` 0 ) M ) = if ( M = 0 , { (/) } , (/) ) ) |