| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							 |-  ( ph -> A C_ NN )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							 |-  ( ph -> S e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> 0 e. NN0 )  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							reprval | 
							 |-  ( ph -> ( A ( repr ` 0 ) M ) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) | 
						
						
							| 7 | 
							
								
							 | 
							fzo0 | 
							 |-  ( 0 ..^ 0 ) = (/)  | 
						
						
							| 8 | 
							
								7
							 | 
							sumeq1i | 
							 |-  sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = sum_ a e. (/) ( c ` a )  | 
						
						
							| 9 | 
							
								
							 | 
							sum0 | 
							 |-  sum_ a e. (/) ( c ` a ) = 0  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtri | 
							 |-  sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = 0  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq1i | 
							 |-  ( sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M <-> 0 = M )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							 |-  ( c = (/) -> ( sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M <-> 0 = M ) )  | 
						
						
							| 13 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							snid | 
							 |-  (/) e. { (/) } | 
						
						
							| 15 | 
							
								
							 | 
							nnex | 
							 |-  NN e. _V  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( ph -> NN e. _V )  | 
						
						
							| 17 | 
							
								16 1
							 | 
							ssexd | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 18 | 
							
								
							 | 
							mapdm0 | 
							 |-  ( A e. _V -> ( A ^m (/) ) = { (/) } ) | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ph -> ( A ^m (/) ) = { (/) } ) | 
						
						
							| 20 | 
							
								14 19
							 | 
							eleqtrrid | 
							 |-  ( ph -> (/) e. ( A ^m (/) ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							oveq2i | 
							 |-  ( A ^m ( 0 ..^ 0 ) ) = ( A ^m (/) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eleqtrrdi | 
							 |-  ( ph -> (/) e. ( A ^m ( 0 ..^ 0 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ph /\ M = 0 ) -> (/) e. ( A ^m ( 0 ..^ 0 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ M = 0 ) -> M = 0 )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							 |-  ( ( ph /\ M = 0 ) -> 0 = M )  | 
						
						
							| 26 | 
							
								21 19
							 | 
							eqtrid | 
							 |-  ( ph -> ( A ^m ( 0 ..^ 0 ) ) = { (/) } ) | 
						
						
							| 27 | 
							
								26
							 | 
							eleq2d | 
							 |-  ( ph -> ( c e. ( A ^m ( 0 ..^ 0 ) ) <-> c e. { (/) } ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							biimpa | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> c e. { (/) } ) | 
						
						
							| 29 | 
							
								
							 | 
							elsni | 
							 |-  ( c e. { (/) } -> c = (/) ) | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> c = (/) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ad4ant13 | 
							 |-  ( ( ( ( ph /\ M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) /\ sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) -> c = (/) )  | 
						
						
							| 32 | 
							
								12 23 25 31
							 | 
							rabeqsnd | 
							 |-  ( ( ph /\ M = 0 ) -> { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = { (/) } ) | 
						
						
							| 33 | 
							
								32
							 | 
							eqcomd | 
							 |-  ( ( ph /\ M = 0 ) -> { (/) } = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) | 
						
						
							| 34 | 
							
								10
							 | 
							a1i | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = 0 )  | 
						
						
							| 35 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> -. M = 0 )  | 
						
						
							| 36 | 
							
								35
							 | 
							neqned | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> M =/= 0 )  | 
						
						
							| 37 | 
							
								36
							 | 
							necomd | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> 0 =/= M )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							eqnetrd | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> sum_ a e. ( 0 ..^ 0 ) ( c ` a ) =/= M )  | 
						
						
							| 39 | 
							
								38
							 | 
							neneqd | 
							 |-  ( ( ( ph /\ -. M = 0 ) /\ c e. ( A ^m ( 0 ..^ 0 ) ) ) -> -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ -. M = 0 ) -> A. c e. ( A ^m ( 0 ..^ 0 ) ) -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M )  | 
						
						
							| 41 | 
							
								
							 | 
							rabeq0 | 
							 |-  ( { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = (/) <-> A. c e. ( A ^m ( 0 ..^ 0 ) ) -. sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M ) | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylibr | 
							 |-  ( ( ph /\ -. M = 0 ) -> { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } = (/) ) | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomd | 
							 |-  ( ( ph /\ -. M = 0 ) -> (/) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) | 
						
						
							| 44 | 
							
								33 43
							 | 
							ifeqda | 
							 |-  ( ph -> if ( M = 0 , { (/) } , (/) ) = { c e. ( A ^m ( 0 ..^ 0 ) ) | sum_ a e. ( 0 ..^ 0 ) ( c ` a ) = M } ) | 
						
						
							| 45 | 
							
								6 44
							 | 
							eqtr4d | 
							 |-  ( ph -> ( A ( repr ` 0 ) M ) = if ( M = 0 , { (/) } , (/) ) ) |