| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							 |-  ( ph -> A C_ NN )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							 |-  ( ph -> S e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							reprf.c | 
							 |-  ( ph -> C e. ( A ( repr ` S ) M ) )  | 
						
						
							| 5 | 
							
								
							 | 
							reprle.x | 
							 |-  ( ph -> X e. ( 0 ..^ S ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = X -> ( C ` a ) = ( C ` X ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fzofi | 
							 |-  ( 0 ..^ S ) e. Fin  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( ph -> ( 0 ..^ S ) e. Fin )  | 
						
						
							| 9 | 
							
								1 2 3 4
							 | 
							reprsum | 
							 |-  ( ph -> sum_ a e. ( 0 ..^ S ) ( C ` a ) = M )  | 
						
						
							| 10 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ a e. ( 0 ..^ S ) ) -> A C_ NN )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							reprf | 
							 |-  ( ph -> C : ( 0 ..^ S ) --> A )  | 
						
						
							| 12 | 
							
								11
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( C ` a ) e. A )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							sseldd | 
							 |-  ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( C ` a ) e. NN )  | 
						
						
							| 14 | 
							
								13
							 | 
							nnrpd | 
							 |-  ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( C ` a ) e. RR+ )  | 
						
						
							| 15 | 
							
								6 8 9 14 5
							 | 
							fsumub | 
							 |-  ( ph -> ( C ` X ) <_ M )  |