| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							 |-  ( ph -> A C_ NN )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							 |-  ( ph -> S e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							reprlt.1 | 
							 |-  ( ph -> M < S )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							reprval | 
							 |-  ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) | 
						
						
							| 6 | 
							
								2
							 | 
							zred | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M e. RR )  | 
						
						
							| 8 | 
							
								3
							 | 
							nn0red | 
							 |-  ( ph -> S e. RR )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							fzofi | 
							 |-  ( 0 ..^ S ) e. Fin  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							nnssre | 
							 |-  NN C_ RR  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( ph -> NN C_ RR )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							sstrd | 
							 |-  ( ph -> A C_ RR )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ RR )  | 
						
						
							| 16 | 
							
								
							 | 
							nnex | 
							 |-  NN e. _V  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ph -> NN e. _V )  | 
						
						
							| 18 | 
							
								17 1
							 | 
							ssexd | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> A e. _V )  | 
						
						
							| 20 | 
							
								10
							 | 
							elexi | 
							 |-  ( 0 ..^ S ) e. _V  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. _V )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c e. ( A ^m ( 0 ..^ S ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							elmapg | 
							 |-  ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) -> ( c e. ( A ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> A ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							biimpa | 
							 |-  ( ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A )  | 
						
						
							| 25 | 
							
								19 21 22 24
							 | 
							syl21anc | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> c : ( 0 ..^ S ) --> A )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> a e. ( 0 ..^ S ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. A )  | 
						
						
							| 29 | 
							
								15 28
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. RR )  | 
						
						
							| 30 | 
							
								11 29
							 | 
							fsumrecl | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) e. RR )  | 
						
						
							| 31 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < S )  | 
						
						
							| 32 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 33 | 
							
								
							 | 
							fsumconst | 
							 |-  ( ( ( 0 ..^ S ) e. Fin /\ 1 e. CC ) -> sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 ) )  | 
						
						
							| 34 | 
							
								10 32 33
							 | 
							mp2an | 
							 |-  sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 )  | 
						
						
							| 35 | 
							
								
							 | 
							hashcl | 
							 |-  ( ( 0 ..^ S ) e. Fin -> ( # ` ( 0 ..^ S ) ) e. NN0 )  | 
						
						
							| 36 | 
							
								10 35
							 | 
							ax-mp | 
							 |-  ( # ` ( 0 ..^ S ) ) e. NN0  | 
						
						
							| 37 | 
							
								36
							 | 
							nn0cni | 
							 |-  ( # ` ( 0 ..^ S ) ) e. CC  | 
						
						
							| 38 | 
							
								37
							 | 
							mulridi | 
							 |-  ( ( # ` ( 0 ..^ S ) ) x. 1 ) = ( # ` ( 0 ..^ S ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							eqtri | 
							 |-  sum_ a e. ( 0 ..^ S ) 1 = ( # ` ( 0 ..^ S ) )  | 
						
						
							| 40 | 
							
								
							 | 
							hashfzo0 | 
							 |-  ( S e. NN0 -> ( # ` ( 0 ..^ S ) ) = S )  | 
						
						
							| 41 | 
							
								3 40
							 | 
							syl | 
							 |-  ( ph -> ( # ` ( 0 ..^ S ) ) = S )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtrid | 
							 |-  ( ph -> sum_ a e. ( 0 ..^ S ) 1 = S )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 = S )  | 
						
						
							| 44 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 e. RR )  | 
						
						
							| 45 | 
							
								1
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ NN )  | 
						
						
							| 46 | 
							
								45 28
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. NN )  | 
						
						
							| 47 | 
							
								
							 | 
							nnge1 | 
							 |-  ( ( c ` a ) e. NN -> 1 <_ ( c ` a ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							 |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 <_ ( c ` a ) )  | 
						
						
							| 49 | 
							
								11 44 29 48
							 | 
							fsumle | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							eqbrtrrd | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) )  | 
						
						
							| 51 | 
							
								7 9 30 31 50
							 | 
							ltletrd | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < sum_ a e. ( 0 ..^ S ) ( c ` a ) )  | 
						
						
							| 52 | 
							
								7 51
							 | 
							ltned | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M =/= sum_ a e. ( 0 ..^ S ) ( c ` a ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							necomd | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) =/= M )  | 
						
						
							| 54 | 
							
								53
							 | 
							neneqd | 
							 |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M )  | 
						
						
							| 55 | 
							
								54
							 | 
							ralrimiva | 
							 |-  ( ph -> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M )  | 
						
						
							| 56 | 
							
								
							 | 
							rabeq0 | 
							 |-  ( { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) <-> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) | 
						
						
							| 57 | 
							
								55 56
							 | 
							sylibr | 
							 |-  ( ph -> { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) ) | 
						
						
							| 58 | 
							
								5 57
							 | 
							eqtrd | 
							 |-  ( ph -> ( A ( repr ` S ) M ) = (/) )  |