| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							 |-  ( ph -> A C_ NN )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							 |-  ( ph -> S e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							reprss.1 | 
							 |-  ( ph -> B C_ A )  | 
						
						
							| 5 | 
							
								
							 | 
							nnex | 
							 |-  NN e. _V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ph -> NN e. _V )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							ssexd | 
							 |-  ( ph -> A e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							mapss | 
							 |-  ( ( A e. _V /\ B C_ A ) -> ( B ^m ( 0 ..^ S ) ) C_ ( A ^m ( 0 ..^ S ) ) )  | 
						
						
							| 9 | 
							
								7 4 8
							 | 
							syl2anc | 
							 |-  ( ph -> ( B ^m ( 0 ..^ S ) ) C_ ( A ^m ( 0 ..^ S ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sselda | 
							 |-  ( ( ph /\ c e. ( B ^m ( 0 ..^ S ) ) ) -> c e. ( A ^m ( 0 ..^ S ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantrr | 
							 |-  ( ( ph /\ ( c e. ( B ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) -> c e. ( A ^m ( 0 ..^ S ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rabss3d | 
							 |-  ( ph -> { c e. ( B ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } C_ { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) | 
						
						
							| 13 | 
							
								4 1
							 | 
							sstrd | 
							 |-  ( ph -> B C_ NN )  | 
						
						
							| 14 | 
							
								13 2 3
							 | 
							reprval | 
							 |-  ( ph -> ( B ( repr ` S ) M ) = { c e. ( B ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) | 
						
						
							| 15 | 
							
								1 2 3
							 | 
							reprval | 
							 |-  ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							3sstr4d | 
							 |-  ( ph -> ( B ( repr ` S ) M ) C_ ( A ( repr ` S ) M ) )  |