Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
4 |
|
reprf.c |
|- ( ph -> C e. ( A ( repr ` S ) M ) ) |
5 |
1 2 3
|
reprval |
|- ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
6 |
4 5
|
eleqtrd |
|- ( ph -> C e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
7 |
|
fveq1 |
|- ( c = C -> ( c ` a ) = ( C ` a ) ) |
8 |
7
|
sumeq2sdv |
|- ( c = C -> sum_ a e. ( 0 ..^ S ) ( c ` a ) = sum_ a e. ( 0 ..^ S ) ( C ` a ) ) |
9 |
8
|
eqeq1d |
|- ( c = C -> ( sum_ a e. ( 0 ..^ S ) ( c ` a ) = M <-> sum_ a e. ( 0 ..^ S ) ( C ` a ) = M ) ) |
10 |
9
|
elrab |
|- ( C e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } <-> ( C e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( C ` a ) = M ) ) |
11 |
6 10
|
sylib |
|- ( ph -> ( C e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( C ` a ) = M ) ) |
12 |
11
|
simprd |
|- ( ph -> sum_ a e. ( 0 ..^ S ) ( C ` a ) = M ) |