Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( S e. V -> S e. _V ) |
2 |
1
|
adantr |
|- ( ( S e. V /\ N e. NN0 ) -> S e. _V ) |
3 |
|
simpr |
|- ( ( S e. V /\ N e. NN0 ) -> N e. NN0 ) |
4 |
|
ovex |
|- ( 0 ..^ N ) e. _V |
5 |
|
mptexg |
|- ( ( 0 ..^ N ) e. _V -> ( x e. ( 0 ..^ N ) |-> S ) e. _V ) |
6 |
4 5
|
mp1i |
|- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> S ) e. _V ) |
7 |
|
oveq2 |
|- ( n = N -> ( 0 ..^ n ) = ( 0 ..^ N ) ) |
8 |
7
|
adantl |
|- ( ( s = S /\ n = N ) -> ( 0 ..^ n ) = ( 0 ..^ N ) ) |
9 |
|
simpll |
|- ( ( ( s = S /\ n = N ) /\ x e. ( 0 ..^ n ) ) -> s = S ) |
10 |
8 9
|
mpteq12dva |
|- ( ( s = S /\ n = N ) -> ( x e. ( 0 ..^ n ) |-> s ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
11 |
|
df-reps |
|- repeatS = ( s e. _V , n e. NN0 |-> ( x e. ( 0 ..^ n ) |-> s ) ) |
12 |
10 11
|
ovmpoga |
|- ( ( S e. _V /\ N e. NN0 /\ ( x e. ( 0 ..^ N ) |-> S ) e. _V ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
13 |
2 3 6 12
|
syl3anc |
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |