Metamath Proof Explorer


Theorem repsconst

Description: Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt . (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsconst
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( ( 0 ..^ N ) X. { S } ) )

Proof

Step Hyp Ref Expression
1 reps
 |-  ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) )
2 fconstmpt
 |-  ( ( 0 ..^ N ) X. { S } ) = ( x e. ( 0 ..^ N ) |-> S )
3 1 2 eqtr4di
 |-  ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( ( 0 ..^ N ) X. { S } ) )