Step |
Hyp |
Ref |
Expression |
1 |
|
repsconst |
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( ( 0 ..^ N ) X. { S } ) ) |
2 |
1
|
eqeq2d |
|- ( ( S e. V /\ N e. NN0 ) -> ( W = ( S repeatS N ) <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
3 |
|
fconst2g |
|- ( S e. V -> ( W : ( 0 ..^ N ) --> { S } <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
4 |
3
|
adantr |
|- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
5 |
|
fconstfv |
|- ( W : ( 0 ..^ N ) --> { S } <-> ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) |
6 |
|
snssi |
|- ( S e. V -> { S } C_ V ) |
7 |
6
|
adantr |
|- ( ( S e. V /\ N e. NN0 ) -> { S } C_ V ) |
8 |
7
|
anim1ci |
|- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( W : ( 0 ..^ N ) --> { S } /\ { S } C_ V ) ) |
9 |
|
fss |
|- ( ( W : ( 0 ..^ N ) --> { S } /\ { S } C_ V ) -> W : ( 0 ..^ N ) --> V ) |
10 |
|
iswrdi |
|- ( W : ( 0 ..^ N ) --> V -> W e. Word V ) |
11 |
8 9 10
|
3syl |
|- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> W e. Word V ) |
12 |
|
ffzo0hash |
|- ( ( N e. NN0 /\ W Fn ( 0 ..^ N ) ) -> ( # ` W ) = N ) |
13 |
12
|
expcom |
|- ( W Fn ( 0 ..^ N ) -> ( N e. NN0 -> ( # ` W ) = N ) ) |
14 |
|
ffn |
|- ( W : ( 0 ..^ N ) --> { S } -> W Fn ( 0 ..^ N ) ) |
15 |
13 14
|
syl11 |
|- ( N e. NN0 -> ( W : ( 0 ..^ N ) --> { S } -> ( # ` W ) = N ) ) |
16 |
15
|
adantl |
|- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } -> ( # ` W ) = N ) ) |
17 |
16
|
imp |
|- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( # ` W ) = N ) |
18 |
11 17
|
jca |
|- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( W e. Word V /\ ( # ` W ) = N ) ) |
19 |
18
|
ex |
|- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
20 |
5 19
|
syl5bir |
|- ( ( S e. V /\ N e. NN0 ) -> ( ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
21 |
20
|
expcomd |
|- ( ( S e. V /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ N ) ( W ` i ) = S -> ( W Fn ( 0 ..^ N ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) ) |
22 |
21
|
imp |
|- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W Fn ( 0 ..^ N ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
23 |
|
wrdf |
|- ( W e. Word V -> W : ( 0 ..^ ( # ` W ) ) --> V ) |
24 |
|
ffn |
|- ( W : ( 0 ..^ ( # ` W ) ) --> V -> W Fn ( 0 ..^ ( # ` W ) ) ) |
25 |
|
oveq2 |
|- ( ( # ` W ) = N -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) |
26 |
25
|
fneq2d |
|- ( ( # ` W ) = N -> ( W Fn ( 0 ..^ ( # ` W ) ) <-> W Fn ( 0 ..^ N ) ) ) |
27 |
26
|
biimpd |
|- ( ( # ` W ) = N -> ( W Fn ( 0 ..^ ( # ` W ) ) -> W Fn ( 0 ..^ N ) ) ) |
28 |
27
|
a1d |
|- ( ( # ` W ) = N -> ( ( S e. V /\ N e. NN0 ) -> ( W Fn ( 0 ..^ ( # ` W ) ) -> W Fn ( 0 ..^ N ) ) ) ) |
29 |
28
|
com13 |
|- ( W Fn ( 0 ..^ ( # ` W ) ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
30 |
23 24 29
|
3syl |
|- ( W e. Word V -> ( ( S e. V /\ N e. NN0 ) -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
31 |
30
|
com12 |
|- ( ( S e. V /\ N e. NN0 ) -> ( W e. Word V -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
32 |
31
|
impd |
|- ( ( S e. V /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) -> W Fn ( 0 ..^ N ) ) ) |
33 |
32
|
adantr |
|- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( ( W e. Word V /\ ( # ` W ) = N ) -> W Fn ( 0 ..^ N ) ) ) |
34 |
22 33
|
impbid |
|- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W Fn ( 0 ..^ N ) <-> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
35 |
34
|
ex |
|- ( ( S e. V /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ N ) ( W ` i ) = S -> ( W Fn ( 0 ..^ N ) <-> ( W e. Word V /\ ( # ` W ) = N ) ) ) ) |
36 |
35
|
pm5.32rd |
|- ( ( S e. V /\ N e. NN0 ) -> ( ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |
37 |
|
df-3an |
|- ( ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) |
38 |
36 5 37
|
3bitr4g |
|- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } <-> ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |
39 |
2 4 38
|
3bitr2d |
|- ( ( S e. V /\ N e. NN0 ) -> ( W = ( S repeatS N ) <-> ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |