Step |
Hyp |
Ref |
Expression |
1 |
|
df-reps |
|- repeatS = ( s e. _V , n e. NN0 |-> ( x e. ( 0 ..^ n ) |-> s ) ) |
2 |
|
ovex |
|- ( 0 ..^ n ) e. _V |
3 |
2
|
mptex |
|- ( x e. ( 0 ..^ n ) |-> s ) e. _V |
4 |
1 3
|
dmmpo |
|- dom repeatS = ( _V X. NN0 ) |
5 |
|
df-nel |
|- ( N e/ NN0 <-> -. N e. NN0 ) |
6 |
5
|
biimpi |
|- ( N e/ NN0 -> -. N e. NN0 ) |
7 |
6
|
intnand |
|- ( N e/ NN0 -> -. ( S e. _V /\ N e. NN0 ) ) |
8 |
|
ndmovg |
|- ( ( dom repeatS = ( _V X. NN0 ) /\ -. ( S e. _V /\ N e. NN0 ) ) -> ( S repeatS N ) = (/) ) |
9 |
4 7 8
|
sylancr |
|- ( N e/ NN0 -> ( S repeatS N ) = (/) ) |