Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
|- 1 e. NN0 |
2 |
|
repsconst |
|- ( ( S e. V /\ 1 e. NN0 ) -> ( S repeatS 1 ) = ( ( 0 ..^ 1 ) X. { S } ) ) |
3 |
1 2
|
mpan2 |
|- ( S e. V -> ( S repeatS 1 ) = ( ( 0 ..^ 1 ) X. { S } ) ) |
4 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
5 |
4
|
a1i |
|- ( S e. V -> ( 0 ..^ 1 ) = { 0 } ) |
6 |
5
|
xpeq1d |
|- ( S e. V -> ( ( 0 ..^ 1 ) X. { S } ) = ( { 0 } X. { S } ) ) |
7 |
|
c0ex |
|- 0 e. _V |
8 |
|
xpsng |
|- ( ( 0 e. _V /\ S e. V ) -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
9 |
7 8
|
mpan |
|- ( S e. V -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
10 |
3 6 9
|
3eqtrd |
|- ( S e. V -> ( S repeatS 1 ) = { <. 0 , S >. } ) |
11 |
|
s1val |
|- ( S e. V -> <" S "> = { <. 0 , S >. } ) |
12 |
10 11
|
eqtr4d |
|- ( S e. V -> ( S repeatS 1 ) = <" S "> ) |