Step |
Hyp |
Ref |
Expression |
1 |
|
df-s2 |
|- <" S S "> = ( <" S "> ++ <" S "> ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
repswccat |
|- ( ( S e. V /\ 1 e. NN0 /\ 1 e. NN0 ) -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( S repeatS ( 1 + 1 ) ) ) |
4 |
2 2 3
|
mp3an23 |
|- ( S e. V -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( S repeatS ( 1 + 1 ) ) ) |
5 |
|
repsw1 |
|- ( S e. V -> ( S repeatS 1 ) = <" S "> ) |
6 |
5 5
|
oveq12d |
|- ( S e. V -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( <" S "> ++ <" S "> ) ) |
7 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
8 |
7
|
a1i |
|- ( S e. V -> ( 1 + 1 ) = 2 ) |
9 |
8
|
oveq2d |
|- ( S e. V -> ( S repeatS ( 1 + 1 ) ) = ( S repeatS 2 ) ) |
10 |
4 6 9
|
3eqtr3d |
|- ( S e. V -> ( <" S "> ++ <" S "> ) = ( S repeatS 2 ) ) |
11 |
1 10
|
eqtr2id |
|- ( S e. V -> ( S repeatS 2 ) = <" S S "> ) |