Metamath Proof Explorer


Theorem repsw2

Description: The "repeated symbol word" of length two. (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repsw2
|- ( S e. V -> ( S repeatS 2 ) = <" S S "> )

Proof

Step Hyp Ref Expression
1 df-s2
 |-  <" S S "> = ( <" S "> ++ <" S "> )
2 1nn0
 |-  1 e. NN0
3 repswccat
 |-  ( ( S e. V /\ 1 e. NN0 /\ 1 e. NN0 ) -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( S repeatS ( 1 + 1 ) ) )
4 2 2 3 mp3an23
 |-  ( S e. V -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( S repeatS ( 1 + 1 ) ) )
5 repsw1
 |-  ( S e. V -> ( S repeatS 1 ) = <" S "> )
6 5 5 oveq12d
 |-  ( S e. V -> ( ( S repeatS 1 ) ++ ( S repeatS 1 ) ) = ( <" S "> ++ <" S "> ) )
7 1p1e2
 |-  ( 1 + 1 ) = 2
8 7 a1i
 |-  ( S e. V -> ( 1 + 1 ) = 2 )
9 8 oveq2d
 |-  ( S e. V -> ( S repeatS ( 1 + 1 ) ) = ( S repeatS 2 ) )
10 4 6 9 3eqtr3d
 |-  ( S e. V -> ( <" S "> ++ <" S "> ) = ( S repeatS 2 ) )
11 1 10 eqtr2id
 |-  ( S e. V -> ( S repeatS 2 ) = <" S S "> )