Metamath Proof Explorer


Theorem repswfsts

Description: The first symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repswfsts
|- ( ( S e. V /\ N e. NN ) -> ( ( S repeatS N ) ` 0 ) = S )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( S e. V /\ N e. NN ) -> S e. V )
2 nnnn0
 |-  ( N e. NN -> N e. NN0 )
3 2 adantl
 |-  ( ( S e. V /\ N e. NN ) -> N e. NN0 )
4 lbfzo0
 |-  ( 0 e. ( 0 ..^ N ) <-> N e. NN )
5 4 biimpri
 |-  ( N e. NN -> 0 e. ( 0 ..^ N ) )
6 5 adantl
 |-  ( ( S e. V /\ N e. NN ) -> 0 e. ( 0 ..^ N ) )
7 repswsymb
 |-  ( ( S e. V /\ N e. NN0 /\ 0 e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` 0 ) = S )
8 1 3 6 7 syl3anc
 |-  ( ( S e. V /\ N e. NN ) -> ( ( S repeatS N ) ` 0 ) = S )