Step |
Hyp |
Ref |
Expression |
1 |
|
repswlen |
|- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |
2 |
1
|
oveq2d |
|- ( ( S e. V /\ N e. NN0 ) -> ( 0 ..^ ( # ` ( S repeatS N ) ) ) = ( 0 ..^ N ) ) |
3 |
2
|
mpteq1d |
|- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
4 |
|
simpll |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> S e. V ) |
5 |
|
simplr |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> N e. NN0 ) |
6 |
1
|
adantr |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( # ` ( S repeatS N ) ) = N ) |
7 |
6
|
oveq1d |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( # ` ( S repeatS N ) ) - 1 ) = ( N - 1 ) ) |
8 |
7
|
oveq1d |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) = ( ( N - 1 ) - x ) ) |
9 |
|
ubmelm1fzo |
|- ( x e. ( 0 ..^ N ) -> ( ( N - x ) - 1 ) e. ( 0 ..^ N ) ) |
10 |
|
elfzoelz |
|- ( x e. ( 0 ..^ N ) -> x e. ZZ ) |
11 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
12 |
11
|
ad2antll |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> N e. CC ) |
13 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
14 |
13
|
adantr |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> x e. CC ) |
15 |
|
1cnd |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> 1 e. CC ) |
16 |
12 14 15
|
sub32d |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( N - x ) - 1 ) = ( ( N - 1 ) - x ) ) |
17 |
16
|
eleq1d |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) <-> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
18 |
17
|
biimpd |
|- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
19 |
18
|
ex |
|- ( x e. ZZ -> ( ( S e. V /\ N e. NN0 ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) ) |
20 |
10 19
|
syl |
|- ( x e. ( 0 ..^ N ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) ) |
21 |
9 20
|
mpid |
|- ( x e. ( 0 ..^ N ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
22 |
21
|
impcom |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) |
23 |
8 22
|
eqeltrd |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) e. ( 0 ..^ N ) ) |
24 |
|
repswsymb |
|- ( ( S e. V /\ N e. NN0 /\ ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) = S ) |
25 |
4 5 23 24
|
syl3anc |
|- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) = S ) |
26 |
25
|
mpteq2dva |
|- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
27 |
3 26
|
eqtrd |
|- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
28 |
|
ovex |
|- ( S repeatS N ) e. _V |
29 |
|
revval |
|- ( ( S repeatS N ) e. _V -> ( reverse ` ( S repeatS N ) ) = ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
30 |
28 29
|
mp1i |
|- ( ( S e. V /\ N e. NN0 ) -> ( reverse ` ( S repeatS N ) ) = ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
31 |
|
reps |
|- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
32 |
27 30 31
|
3eqtr4d |
|- ( ( S e. V /\ N e. NN0 ) -> ( reverse ` ( S repeatS N ) ) = ( S repeatS N ) ) |