Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
|- ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |
2 |
1
|
a1i |
|- ( ( W e. Word V /\ S e. V ) -> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
3 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
4 |
3
|
anim1ci |
|- ( ( W e. Word V /\ S e. V ) -> ( S e. V /\ ( # ` W ) e. NN0 ) ) |
5 |
|
repsdf2 |
|- ( ( S e. V /\ ( # ` W ) e. NN0 ) -> ( W = ( S repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
6 |
4 5
|
syl |
|- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
7 |
|
simpl |
|- ( ( W e. Word V /\ S e. V ) -> W e. Word V ) |
8 |
|
eqidd |
|- ( ( W e. Word V /\ S e. V ) -> ( # ` W ) = ( # ` W ) ) |
9 |
7 8
|
jca |
|- ( ( W e. Word V /\ S e. V ) -> ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) ) |
10 |
9
|
biantrurd |
|- ( ( W e. Word V /\ S e. V ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
11 |
2 6 10
|
3bitr4d |
|- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |
12 |
11
|
biimpd |
|- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |