Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( W = (/) -> ( # ` W ) = ( # ` (/) ) ) |
2 |
|
hash0 |
|- ( # ` (/) ) = 0 |
3 |
1 2
|
eqtrdi |
|- ( W = (/) -> ( # ` W ) = 0 ) |
4 |
|
fvex |
|- ( W ` 0 ) e. _V |
5 |
|
repsw0 |
|- ( ( W ` 0 ) e. _V -> ( ( W ` 0 ) repeatS 0 ) = (/) ) |
6 |
4 5
|
ax-mp |
|- ( ( W ` 0 ) repeatS 0 ) = (/) |
7 |
6
|
eqcomi |
|- (/) = ( ( W ` 0 ) repeatS 0 ) |
8 |
|
simpr |
|- ( ( ( # ` W ) = 0 /\ W = (/) ) -> W = (/) ) |
9 |
|
oveq2 |
|- ( ( # ` W ) = 0 -> ( ( W ` 0 ) repeatS ( # ` W ) ) = ( ( W ` 0 ) repeatS 0 ) ) |
10 |
9
|
adantr |
|- ( ( ( # ` W ) = 0 /\ W = (/) ) -> ( ( W ` 0 ) repeatS ( # ` W ) ) = ( ( W ` 0 ) repeatS 0 ) ) |
11 |
7 8 10
|
3eqtr4a |
|- ( ( ( # ` W ) = 0 /\ W = (/) ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |
12 |
|
ral0 |
|- A. i e. (/) ( W ` i ) = ( W ` 0 ) |
13 |
|
oveq2 |
|- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 0 ) ) |
14 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
15 |
13 14
|
eqtrdi |
|- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = (/) ) |
16 |
15
|
raleqdv |
|- ( ( # ` W ) = 0 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. (/) ( W ` i ) = ( W ` 0 ) ) ) |
17 |
12 16
|
mpbiri |
|- ( ( # ` W ) = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
18 |
17
|
adantr |
|- ( ( ( # ` W ) = 0 /\ W = (/) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
19 |
11 18
|
2thd |
|- ( ( ( # ` W ) = 0 /\ W = (/) ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
20 |
3 19
|
mpancom |
|- ( W = (/) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
21 |
20
|
a1d |
|- ( W = (/) -> ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
22 |
|
df-3an |
|- ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
23 |
22
|
a1i |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
24 |
|
fstwrdne |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( W ` 0 ) e. V ) |
25 |
24
|
ancoms |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( W ` 0 ) e. V ) |
26 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
27 |
26
|
adantl |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( # ` W ) e. NN0 ) |
28 |
|
repsdf2 |
|- ( ( ( W ` 0 ) e. V /\ ( # ` W ) e. NN0 ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
29 |
25 27 28
|
syl2anc |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
30 |
|
simpr |
|- ( ( W =/= (/) /\ W e. Word V ) -> W e. Word V ) |
31 |
|
eqidd |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( # ` W ) = ( # ` W ) ) |
32 |
30 31
|
jca |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) ) |
33 |
32
|
biantrurd |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
34 |
23 29 33
|
3bitr4d |
|- ( ( W =/= (/) /\ W e. Word V ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
35 |
34
|
ex |
|- ( W =/= (/) -> ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
36 |
21 35
|
pm2.61ine |
|- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |