Step |
Hyp |
Ref |
Expression |
1 |
|
rrnequiv.y |
|- Y = ( ( CCfld |`s RR ) ^s I ) |
2 |
|
rrnequiv.d |
|- D = ( dist ` Y ) |
3 |
|
rrnequiv.1 |
|- X = ( RR ^m I ) |
4 |
|
fconstmpt |
|- ( I X. { ( CCfld |`s RR ) } ) = ( k e. I |-> ( CCfld |`s RR ) ) |
5 |
4
|
oveq2i |
|- ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) = ( ( Scalar ` CCfld ) Xs_ ( k e. I |-> ( CCfld |`s RR ) ) ) |
6 |
|
eqid |
|- ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
7 |
|
ax-resscn |
|- RR C_ CC |
8 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
9 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
10 |
8 9
|
ressbas2 |
|- ( RR C_ CC -> RR = ( Base ` ( CCfld |`s RR ) ) ) |
11 |
7 10
|
ax-mp |
|- RR = ( Base ` ( CCfld |`s RR ) ) |
12 |
|
reex |
|- RR e. _V |
13 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
14 |
8 13
|
ressds |
|- ( RR e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) ) |
15 |
12 14
|
ax-mp |
|- ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) |
16 |
15
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` ( CCfld |`s RR ) ) |` ( RR X. RR ) ) |
17 |
|
eqid |
|- ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
18 |
|
fvexd |
|- ( I e. Fin -> ( Scalar ` CCfld ) e. _V ) |
19 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
20 |
|
ovex |
|- ( CCfld |`s RR ) e. _V |
21 |
20
|
a1i |
|- ( ( I e. Fin /\ k e. I ) -> ( CCfld |`s RR ) e. _V ) |
22 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
23 |
22
|
remet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
24 |
23
|
a1i |
|- ( ( I e. Fin /\ k e. I ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) ) |
25 |
5 6 11 16 17 18 19 21 24
|
prdsmet |
|- ( I e. Fin -> ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) e. ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
26 |
|
eqid |
|- ( Scalar ` CCfld ) = ( Scalar ` CCfld ) |
27 |
8 26
|
resssca |
|- ( RR e. _V -> ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) ) |
28 |
12 27
|
ax-mp |
|- ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) |
29 |
1 28
|
pwsval |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
30 |
20 29
|
mpan |
|- ( I e. Fin -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
31 |
30
|
fveq2d |
|- ( I e. Fin -> ( dist ` Y ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
32 |
2 31
|
syl5eq |
|- ( I e. Fin -> D = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
33 |
1 11
|
pwsbas |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> ( RR ^m I ) = ( Base ` Y ) ) |
34 |
20 33
|
mpan |
|- ( I e. Fin -> ( RR ^m I ) = ( Base ` Y ) ) |
35 |
30
|
fveq2d |
|- ( I e. Fin -> ( Base ` Y ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
36 |
34 35
|
eqtrd |
|- ( I e. Fin -> ( RR ^m I ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
37 |
3 36
|
syl5eq |
|- ( I e. Fin -> X = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
38 |
37
|
fveq2d |
|- ( I e. Fin -> ( Met ` X ) = ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
39 |
25 32 38
|
3eltr4d |
|- ( I e. Fin -> D e. ( Met ` X ) ) |