Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reqabi.1 | |- A = { x e. B | ph } |
|
| Assertion | reqabi | |- ( x e. A <-> ( x e. B /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reqabi.1 | |- A = { x e. B | ph } |
|
| 2 | 1 | eleq2i | |- ( x e. A <-> x e. { x e. B | ph } ) |
| 3 | rabid | |- ( x e. { x e. B | ph } <-> ( x e. B /\ ph ) ) |
|
| 4 | 2 3 | bitri | |- ( x e. A <-> ( x e. B /\ ph ) ) |