| Step |
Hyp |
Ref |
Expression |
| 1 |
|
requad2.a |
|- ( ph -> A e. RR ) |
| 2 |
|
requad2.z |
|- ( ph -> A =/= 0 ) |
| 3 |
|
requad2.b |
|- ( ph -> B e. RR ) |
| 4 |
|
requad2.c |
|- ( ph -> C e. RR ) |
| 5 |
|
requad2.d |
|- ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
| 6 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. CC ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ x e. RR ) -> A =/= 0 ) |
| 9 |
3
|
recnd |
|- ( ph -> B e. CC ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. CC ) |
| 11 |
4
|
recnd |
|- ( ph -> C e. CC ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x e. RR ) -> C e. CC ) |
| 13 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ x e. RR ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
| 16 |
7 8 10 12 14 15
|
quad |
|- ( ( ph /\ x e. RR ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) |
| 17 |
|
eleq1 |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR <-> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 19 |
|
2re |
|- 2 e. RR |
| 20 |
19
|
a1i |
|- ( ph -> 2 e. RR ) |
| 21 |
20 1
|
remulcld |
|- ( ph -> ( 2 x. A ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( 2 x. A ) e. RR ) |
| 23 |
9
|
negcld |
|- ( ph -> -u B e. CC ) |
| 24 |
3
|
resqcld |
|- ( ph -> ( B ^ 2 ) e. RR ) |
| 25 |
|
4re |
|- 4 e. RR |
| 26 |
25
|
a1i |
|- ( ph -> 4 e. RR ) |
| 27 |
1 4
|
remulcld |
|- ( ph -> ( A x. C ) e. RR ) |
| 28 |
26 27
|
remulcld |
|- ( ph -> ( 4 x. ( A x. C ) ) e. RR ) |
| 29 |
24 28
|
resubcld |
|- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. RR ) |
| 30 |
5 29
|
eqeltrd |
|- ( ph -> D e. RR ) |
| 31 |
30
|
recnd |
|- ( ph -> D e. CC ) |
| 32 |
31
|
sqrtcld |
|- ( ph -> ( sqrt ` D ) e. CC ) |
| 33 |
23 32
|
addcld |
|- ( ph -> ( -u B + ( sqrt ` D ) ) e. CC ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. CC ) |
| 35 |
3
|
renegcld |
|- ( ph -> -u B e. RR ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> -u B e. RR ) |
| 37 |
32
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) e. CC ) |
| 38 |
31
|
negnegd |
|- ( ph -> -u -u D = D ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> -u -u D = D ) |
| 40 |
39
|
eqcomd |
|- ( ( ph /\ -. 0 <_ D ) -> D = -u -u D ) |
| 41 |
40
|
fveq2d |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) = ( sqrt ` -u -u D ) ) |
| 42 |
30
|
renegcld |
|- ( ph -> -u D e. RR ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> -u D e. RR ) |
| 44 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 45 |
30 44
|
ltnled |
|- ( ph -> ( D < 0 <-> -. 0 <_ D ) ) |
| 46 |
|
ltle |
|- ( ( D e. RR /\ 0 e. RR ) -> ( D < 0 -> D <_ 0 ) ) |
| 47 |
30 44 46
|
syl2anc |
|- ( ph -> ( D < 0 -> D <_ 0 ) ) |
| 48 |
45 47
|
sylbird |
|- ( ph -> ( -. 0 <_ D -> D <_ 0 ) ) |
| 49 |
48
|
imp |
|- ( ( ph /\ -. 0 <_ D ) -> D <_ 0 ) |
| 50 |
30
|
le0neg1d |
|- ( ph -> ( D <_ 0 <-> 0 <_ -u D ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( D <_ 0 <-> 0 <_ -u D ) ) |
| 52 |
49 51
|
mpbid |
|- ( ( ph /\ -. 0 <_ D ) -> 0 <_ -u D ) |
| 53 |
43 52
|
sqrtnegd |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u -u D ) = ( _i x. ( sqrt ` -u D ) ) ) |
| 54 |
41 53
|
eqtrd |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) = ( _i x. ( sqrt ` -u D ) ) ) |
| 55 |
|
ax-icn |
|- _i e. CC |
| 56 |
55
|
a1i |
|- ( ( ph /\ -. 0 <_ D ) -> _i e. CC ) |
| 57 |
31
|
negcld |
|- ( ph -> -u D e. CC ) |
| 58 |
57
|
sqrtcld |
|- ( ph -> ( sqrt ` -u D ) e. CC ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) e. CC ) |
| 60 |
56 59
|
mulcomd |
|- ( ( ph /\ -. 0 <_ D ) -> ( _i x. ( sqrt ` -u D ) ) = ( ( sqrt ` -u D ) x. _i ) ) |
| 61 |
43 52
|
resqrtcld |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) e. RR ) |
| 62 |
|
inelr |
|- -. _i e. RR |
| 63 |
|
eldif |
|- ( _i e. ( CC \ RR ) <-> ( _i e. CC /\ -. _i e. RR ) ) |
| 64 |
55 62 63
|
mpbir2an |
|- _i e. ( CC \ RR ) |
| 65 |
64
|
a1i |
|- ( ( ph /\ -. 0 <_ D ) -> _i e. ( CC \ RR ) ) |
| 66 |
30
|
lt0neg1d |
|- ( ph -> ( D < 0 <-> 0 < -u D ) ) |
| 67 |
|
ltne |
|- ( ( 0 e. RR /\ 0 < -u D ) -> -u D =/= 0 ) |
| 68 |
44 67
|
sylan |
|- ( ( ph /\ 0 < -u D ) -> -u D =/= 0 ) |
| 69 |
42
|
adantr |
|- ( ( ph /\ 0 < -u D ) -> -u D e. RR ) |
| 70 |
|
ltle |
|- ( ( 0 e. RR /\ -u D e. RR ) -> ( 0 < -u D -> 0 <_ -u D ) ) |
| 71 |
44 42 70
|
syl2anc |
|- ( ph -> ( 0 < -u D -> 0 <_ -u D ) ) |
| 72 |
71
|
imp |
|- ( ( ph /\ 0 < -u D ) -> 0 <_ -u D ) |
| 73 |
|
sqrt00 |
|- ( ( -u D e. RR /\ 0 <_ -u D ) -> ( ( sqrt ` -u D ) = 0 <-> -u D = 0 ) ) |
| 74 |
69 72 73
|
syl2anc |
|- ( ( ph /\ 0 < -u D ) -> ( ( sqrt ` -u D ) = 0 <-> -u D = 0 ) ) |
| 75 |
74
|
bicomd |
|- ( ( ph /\ 0 < -u D ) -> ( -u D = 0 <-> ( sqrt ` -u D ) = 0 ) ) |
| 76 |
75
|
necon3bid |
|- ( ( ph /\ 0 < -u D ) -> ( -u D =/= 0 <-> ( sqrt ` -u D ) =/= 0 ) ) |
| 77 |
68 76
|
mpbid |
|- ( ( ph /\ 0 < -u D ) -> ( sqrt ` -u D ) =/= 0 ) |
| 78 |
77
|
ex |
|- ( ph -> ( 0 < -u D -> ( sqrt ` -u D ) =/= 0 ) ) |
| 79 |
66 78
|
sylbid |
|- ( ph -> ( D < 0 -> ( sqrt ` -u D ) =/= 0 ) ) |
| 80 |
45 79
|
sylbird |
|- ( ph -> ( -. 0 <_ D -> ( sqrt ` -u D ) =/= 0 ) ) |
| 81 |
80
|
imp |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` -u D ) =/= 0 ) |
| 82 |
61 65 81
|
recnmulnred |
|- ( ( ph /\ -. 0 <_ D ) -> ( ( sqrt ` -u D ) x. _i ) e/ RR ) |
| 83 |
|
df-nel |
|- ( ( ( sqrt ` -u D ) x. _i ) e/ RR <-> -. ( ( sqrt ` -u D ) x. _i ) e. RR ) |
| 84 |
82 83
|
sylib |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( ( sqrt ` -u D ) x. _i ) e. RR ) |
| 85 |
60 84
|
eqneltrd |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( _i x. ( sqrt ` -u D ) ) e. RR ) |
| 86 |
54 85
|
eqneltrd |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( sqrt ` D ) e. RR ) |
| 87 |
37 86
|
eldifd |
|- ( ( ph /\ -. 0 <_ D ) -> ( sqrt ` D ) e. ( CC \ RR ) ) |
| 88 |
36 87
|
readdcnnred |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e/ RR ) |
| 89 |
|
df-nel |
|- ( ( -u B + ( sqrt ` D ) ) e/ RR <-> -. ( -u B + ( sqrt ` D ) ) e. RR ) |
| 90 |
88 89
|
sylib |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( -u B + ( sqrt ` D ) ) e. RR ) |
| 91 |
34 90
|
eldifd |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. ( CC \ RR ) ) |
| 92 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 93 |
|
2ne0 |
|- 2 =/= 0 |
| 94 |
93
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 95 |
92 6 94 2
|
mulne0d |
|- ( ph -> ( 2 x. A ) =/= 0 ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( 2 x. A ) =/= 0 ) |
| 97 |
22 91 96
|
cndivrenred |
|- ( ( ph /\ -. 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR ) |
| 98 |
|
df-nel |
|- ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR <-> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) |
| 99 |
97 98
|
sylib |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) |
| 100 |
99
|
ex |
|- ( ph -> ( -. 0 <_ D -> -. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 101 |
100
|
con4d |
|- ( ph -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) |
| 103 |
18 102
|
sylbid |
|- ( ( ph /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) |
| 104 |
103
|
ex |
|- ( ph -> ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR -> 0 <_ D ) ) ) |
| 105 |
|
eleq1 |
|- ( x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR <-> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 106 |
105
|
adantl |
|- ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR <-> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 107 |
23 32
|
subcld |
|- ( ph -> ( -u B - ( sqrt ` D ) ) e. CC ) |
| 108 |
107
|
adantr |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. CC ) |
| 109 |
36 87
|
resubcnnred |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e/ RR ) |
| 110 |
|
df-nel |
|- ( ( -u B - ( sqrt ` D ) ) e/ RR <-> -. ( -u B - ( sqrt ` D ) ) e. RR ) |
| 111 |
109 110
|
sylib |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( -u B - ( sqrt ` D ) ) e. RR ) |
| 112 |
108 111
|
eldifd |
|- ( ( ph /\ -. 0 <_ D ) -> ( -u B - ( sqrt ` D ) ) e. ( CC \ RR ) ) |
| 113 |
22 112 96
|
cndivrenred |
|- ( ( ph /\ -. 0 <_ D ) -> ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR ) |
| 114 |
|
df-nel |
|- ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e/ RR <-> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) |
| 115 |
113 114
|
sylib |
|- ( ( ph /\ -. 0 <_ D ) -> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) |
| 116 |
115
|
ex |
|- ( ph -> ( -. 0 <_ D -> -. ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) ) |
| 117 |
116
|
con4d |
|- ( ph -> ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) |
| 118 |
117
|
adantr |
|- ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR -> 0 <_ D ) ) |
| 119 |
106 118
|
sylbid |
|- ( ( ph /\ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) |
| 120 |
119
|
ex |
|- ( ph -> ( x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x e. RR -> 0 <_ D ) ) ) |
| 121 |
104 120
|
jaod |
|- ( ph -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( x e. RR -> 0 <_ D ) ) ) |
| 122 |
121
|
com23 |
|- ( ph -> ( x e. RR -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> 0 <_ D ) ) ) |
| 123 |
122
|
imp |
|- ( ( ph /\ x e. RR ) -> ( ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ x = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> 0 <_ D ) ) |
| 124 |
16 123
|
sylbid |
|- ( ( ph /\ x e. RR ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> 0 <_ D ) ) |
| 125 |
124
|
rexlimdva |
|- ( ph -> ( E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 -> 0 <_ D ) ) |
| 126 |
35
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> -u B e. RR ) |
| 127 |
30
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> D e. RR ) |
| 128 |
|
simpr |
|- ( ( ph /\ 0 <_ D ) -> 0 <_ D ) |
| 129 |
127 128
|
resqrtcld |
|- ( ( ph /\ 0 <_ D ) -> ( sqrt ` D ) e. RR ) |
| 130 |
126 129
|
readdcld |
|- ( ( ph /\ 0 <_ D ) -> ( -u B + ( sqrt ` D ) ) e. RR ) |
| 131 |
19
|
a1i |
|- ( ( ph /\ 0 <_ D ) -> 2 e. RR ) |
| 132 |
1
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> A e. RR ) |
| 133 |
131 132
|
remulcld |
|- ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) e. RR ) |
| 134 |
95
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> ( 2 x. A ) =/= 0 ) |
| 135 |
130 133 134
|
redivcld |
|- ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. RR ) |
| 136 |
|
oveq1 |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( x ^ 2 ) = ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) |
| 137 |
136
|
oveq2d |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) ) |
| 138 |
|
oveq2 |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( B x. x ) = ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) |
| 139 |
138
|
oveq1d |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( B x. x ) + C ) = ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) |
| 140 |
137 139
|
oveq12d |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) ) |
| 141 |
140
|
eqeq1d |
|- ( x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) ) |
| 142 |
141
|
adantl |
|- ( ( ( ph /\ 0 <_ D ) /\ x = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) -> ( ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) ) |
| 143 |
|
eqidd |
|- ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) |
| 144 |
143
|
orcd |
|- ( ( ph /\ 0 <_ D ) -> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) |
| 145 |
6
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> A e. CC ) |
| 146 |
2
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> A =/= 0 ) |
| 147 |
9
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> B e. CC ) |
| 148 |
11
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> C e. CC ) |
| 149 |
92 6
|
mulcld |
|- ( ph -> ( 2 x. A ) e. CC ) |
| 150 |
33 149 95
|
divcld |
|- ( ph -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) |
| 151 |
150
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) e. CC ) |
| 152 |
5
|
adantr |
|- ( ( ph /\ 0 <_ D ) -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
| 153 |
145 146 147 148 151 152
|
quad |
|- ( ( ph /\ 0 <_ D ) -> ( ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 <-> ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) |
| 154 |
144 153
|
mpbird |
|- ( ( ph /\ 0 <_ D ) -> ( ( A x. ( ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ^ 2 ) ) + ( ( B x. ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) ) + C ) ) = 0 ) |
| 155 |
135 142 154
|
rspcedvd |
|- ( ( ph /\ 0 <_ D ) -> E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) |
| 156 |
155
|
ex |
|- ( ph -> ( 0 <_ D -> E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 ) ) |
| 157 |
125 156
|
impbid |
|- ( ph -> ( E. x e. RR ( ( A x. ( x ^ 2 ) ) + ( ( B x. x ) + C ) ) = 0 <-> 0 <_ D ) ) |