| Step | Hyp | Ref | Expression | 
						
							| 1 |  | replim |  |-  ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. CC /\ A e. RR ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) | 
						
							| 3 |  | reim0 |  |-  ( A e. RR -> ( Im ` A ) = 0 ) | 
						
							| 4 | 3 | oveq2d |  |-  ( A e. RR -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) | 
						
							| 5 |  | it0e0 |  |-  ( _i x. 0 ) = 0 | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( A e. RR -> ( _i x. ( Im ` A ) ) = 0 ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. CC /\ A e. RR ) -> ( _i x. ( Im ` A ) ) = 0 ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) | 
						
							| 9 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( A e. CC -> ( Re ` A ) e. CC ) | 
						
							| 11 | 10 | addridd |  |-  ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) | 
						
							| 13 | 2 8 12 | 3eqtrrd |  |-  ( ( A e. CC /\ A e. RR ) -> ( Re ` A ) = A ) | 
						
							| 14 |  | simpr |  |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) = A ) | 
						
							| 15 | 9 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) e. RR ) | 
						
							| 16 | 14 15 | eqeltrrd |  |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> A e. RR ) | 
						
							| 17 | 13 16 | impbida |  |-  ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |