| Step |
Hyp |
Ref |
Expression |
| 1 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. CC /\ A e. RR ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 3 |
|
reim0 |
|- ( A e. RR -> ( Im ` A ) = 0 ) |
| 4 |
3
|
oveq2d |
|- ( A e. RR -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) |
| 5 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 6 |
4 5
|
eqtrdi |
|- ( A e. RR -> ( _i x. ( Im ` A ) ) = 0 ) |
| 7 |
6
|
adantl |
|- ( ( A e. CC /\ A e. RR ) -> ( _i x. ( Im ` A ) ) = 0 ) |
| 8 |
7
|
oveq2d |
|- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) |
| 9 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 10 |
9
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
| 11 |
10
|
addridd |
|- ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
| 12 |
11
|
adantr |
|- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
| 13 |
2 8 12
|
3eqtrrd |
|- ( ( A e. CC /\ A e. RR ) -> ( Re ` A ) = A ) |
| 14 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) = A ) |
| 15 |
9
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) e. RR ) |
| 16 |
14 15
|
eqeltrrd |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> A e. RR ) |
| 17 |
13 16
|
impbida |
|- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |