Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. CC /\ A e. RR ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
3 |
|
reim0 |
|- ( A e. RR -> ( Im ` A ) = 0 ) |
4 |
3
|
oveq2d |
|- ( A e. RR -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) |
5 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
6 |
4 5
|
eqtrdi |
|- ( A e. RR -> ( _i x. ( Im ` A ) ) = 0 ) |
7 |
6
|
adantl |
|- ( ( A e. CC /\ A e. RR ) -> ( _i x. ( Im ` A ) ) = 0 ) |
8 |
7
|
oveq2d |
|- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) |
9 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
10 |
9
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
11 |
10
|
addid1d |
|- ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
12 |
11
|
adantr |
|- ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
13 |
2 8 12
|
3eqtrrd |
|- ( ( A e. CC /\ A e. RR ) -> ( Re ` A ) = A ) |
14 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) = A ) |
15 |
9
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) e. RR ) |
16 |
14 15
|
eqeltrrd |
|- ( ( A e. CC /\ ( Re ` A ) = A ) -> A e. RR ) |
17 |
13 16
|
impbida |
|- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |