Metamath Proof Explorer


Theorem rerebd

Description: A real number equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1
|- ( ph -> A e. CC )
rerebd.2
|- ( ph -> ( Re ` A ) = A )
Assertion rerebd
|- ( ph -> A e. RR )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 rerebd.2
 |-  ( ph -> ( Re ` A ) = A )
3 rereb
 |-  ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) )
4 1 3 syl
 |-  ( ph -> ( A e. RR <-> ( Re ` A ) = A ) )
5 2 4 mpbird
 |-  ( ph -> A e. RR )