Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcl.1 | |- A e. RR |
|
| rereccl.2 | |- A =/= 0 |
||
| Assertion | rereccli | |- ( 1 / A ) e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivcl.1 | |- A e. RR |
|
| 2 | rereccl.2 | |- A =/= 0 |
|
| 3 | 1 | rerecclzi | |- ( A =/= 0 -> ( 1 / A ) e. RR ) |
| 4 | 2 3 | ax-mp | |- ( 1 / A ) e. RR |